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Foreword

People who write their own computer programs often wonder why the ma-
chine gives inaccurate planet positions, an unreal eclipse track, or a faulty
Moon phase. Sometimes they insist, bewildered, “and I used double preci-
sion, too.” Even commercial software is sometimes afflicted with gremlins,
which comes as quite a shock to anyone caught up in the mystique and
presumed infallibility of computers. Good techniques can help us avoid
erroneous results from a flawed program or a simplistic procedure—and
that’s what this book is all about.

In the field of celestial calculations, Jean Meeus has enjoyed wide ac-
claim and respect since long before microcomputers and pocket calculators
appeared on the market. When he brought out his Astronomical Formu-
lae for Calculators in 1979, it was practically the only book of its genre.
It quickly became the “source among sources,” even for other writers in
the field. Many of them have warmly acknowledged their debt (or should
have), citing the unparalleled clarity of his instructions and the rigor of his
methods.

And now this Belgian astronomer has outdone himself yet again! Vir-
tually every previous handbook on celestial calculations (including his own
earlier work) was forced to rely on formulae for the Sun, Moon, and planets
that were developed in the last century—or at least before 1920. The past
10 years, however, have seen a stunning revolution in how the world’s ma-
jor observatories produce their almanacs. The Jet Propulsion Laboratory
in California and the U.S. Naval Observatory in Washington, D.C., have
perfected powerful new machine methods for modeling the motions and in-
teractions of bodies within the solar system. At the same time in Paris, the
Bureau des Longitudes has been a beehive of activity aimed at describing
these motions analytically, in the form of explicit equations.

Yet until now the fruits of this exciting work have remained mostly
out of reach of ordinary people. The details have existed mainly on reels of
inagnetic tape in a form comprehensible only to the largest brains, human or
electronic. But Astronomical Algorithms changes all that. With his special



knack for computations of all sorts, the author has made the essentials of
these modern techniques available to us all.

We also stand at a confusing crossroads for astronomy. In just the
last few years the International Astronomical Union has introduced subtle
changes in the reference frame used for the coordinates of celestial ob-
jects, both within and far beyond our solar system. So sweeping are these
revisions that a highly respected work for professional astronomers, the Fz-
planatory Supplement to the Astronomical Ephemeris, published in 1961,
is now seriously out of date. While the technical journals have seen a flurry
of scientific papers on these issues, the book you’re holding now is the first
to offer succinet and practical methods for coping with the changeover. It
will be many years before astronomical data bases and catalogues are fully
converted to the new system, and anyone who needs a detailed understand-
ing of what’s going on will appreciate this book’s many comments about
the FK4 and FK5 reference frames, “equinox error,” and the distinction
hetween “J” and “B” when placed before an epoch like 2000.0.

Scarcely any formula is presented without a fully worked numerical
example—so crucial to the debugging process. The emphasis throughout
is on testing, on the proper arrangement of formulae, and on not pushing
them beyond the time span over which they are valid. Chapter 2 con-
tains much wisdom of this sort, growing out of the author’s long experience
with various computers and their languages. He alerts us to other pitfalls
throughout the text. Anyone who tries to chart the path of a comet, for
instance, soon encounters Kepler’s equation. It has so vexed astronomers
over the years that literally hundreds of solutions have been proposed; the
striking graphs in Chapter 29 give a good idea why.

Whenever I read about interpolation techniques, as in Chapter 3, I'm
reminded poignantly of Comet Kohoutek. News of its discovery caused
a great stir in the spring of 1973, and then it let observers down with
a lackluster performance. But this comet also taught me an important
mathematical lesson. After preparing a chart of its motion from a list of
ephemeris points, I noticed that it was going to pass very near the Sun
and tried several interpolation schemes in hopes of finding out what the
exact time and minimum distance would be. Much to my surprise, they
all failed to give an answer matching what was perfectly obvious from my
chart! Readers of this book can save themselves a similar frustration by
paying close attention to the remarks on page 107.

When he’s not busy writing or conducting seminars on computing tech-
niques, Meeus likes to seize hold of an astronomical problem with great zeal,
especially if he senses it is a calculation that has never been done before.
Once T asked him about the dates in the past and future when the Moon
reaches its most extreme near and far distances from the Earth. Within



weeks he had created a table much like that given in Table 48.C of this
book. He later confided that this calculation had taken 470 hours on his
HP-85 computer, consuming 12 kilowatt-hours of electricity.

On another occasion I heard about a program that was much too large
for the mainframe computer he was using at the time. So he devised a
scheme to avoid storing the vast number of coefficients in the computer's
limited memory; his Fortran program simply read and rewound the same
magnetic tape 915 times in the course of generating the hour-by-hour lunar
ephemeris hé sought. No problem, except that the computer-room opera-
tors began to take notice, getting mildly perturbed!

Astronomical calculations have a variety of uses, some scarcely foreseen
by the person making them. As long ago as 1962, for example, Meeus pub-
lished an article in the British Astronomical Association Journal about a
rare and remarkable forthcoming event. If any observers happened to be on
Mars on 1984 May 11, he explained, they should be able to see the silhou-
ette of Earth pass directly across the face of the Sun. Among his readers
was the science-fiction writer Arthur C. Clarke, who later incorporated the
calculations in a short story, Transit of FEarth. The piece tells of an astro-
naut, stranded on the red planet, who barely manages to witness this event
before his oxygen supply runs out.

Many of the topics in this book are targeted at serious observers of the
sky. Thus, Chapter 51 can help in predicting the illumination at a specific
spot on the Moon, for any date and time. Observers often want to know
the exact moments when sunlight will just glance across a particular crater,
sinuous rille, or gently sloping lunar dome, because oblique lighting is ideal
for telescopic scrutiny, making subtle reliefs stand out better than in most
of NASA'’s closeup spacecraft photographs. This chapter can also help us
find when the Moon will undergo extreme librations, turning craters near
the limb our way.

Chapter 43 holds a special treat for students of Jupiter. First there is
a simple method for locating the four famous satellites, quite adequate for
identifying them in your own telescope or on historical drawings back to the
time of Galileo. Then comes a second set of formulae of the utmost accu-
racy. Here the computer hobbyist can have a field day, creating observing
schedules not only for ordinary satellite eclipses and transits but also for
the mutual events between one satellite and another. Astronomy journals
have been lax in forecasting these dramatic events, so that many of them
have gone unobserved except by accident. For handling the Jovian moons,
the routines presented in this book rival or exceed in accuracy those used
by the great national almanac offices.

Other unusual topics are offered, like the method in Chapter 50 for com-
puting the dates when the Moon’s declination becomes extreme. This is no



frivolous calculation, for the very issue came up in recent findings about a
century-old murder trial involving the Illinois lawyer and soon-to-be U.S.
President Abraham Lincoln. Historians had long tried to reconcile conflict-
ing testimony about the Moon and its role in allowing a witness to see the
details of the murder. Some suggested that Lincoln, as lawyer for the de-
fense, may have tampered with an almanac. Not until 1990 was this curious
situation explained, and Lincoln’s integrity upheld, when Donald W. Olson
and Russell Doescher noticed something quite unusual about the Moon on
the night in question: 1857 August 29. As any user of this book can con-
firm, the Moon had a far southerly declination that night, nearly the most
extreme value possible in its 18.6-year cycle, and this circumstance made
the time of moonset appear quite at odds with its phase. Here is a beautiful
instance of astronomers stepping in, bringing their special knowledge and
calculations to bear on a longstanding puzzle for historians.

We now live in a thrilling time for practitioners of the number-crunching
art. The four-function pocket calculators that were so costly 20 years ago
are now incorporated as a gimmick on certain wristwatches. The memory
capacity of the 1K RAM board in the pioneering MITS Altair microcom-
puter is exceeded 500-fold by a single chip in some of today’s laptop and
notebook computers. Who knows what other marvels lie just ahead? By
presenting these astronomical algorithms in standard mathematical nota-
tion, rather than in the form of program listings, the author has made them
accessible to users of a wide variety of machines and computer languages—
including those not yet invented.

Roger W. Sinnott
Sky & Telescope magazine



Introduction

When, in 1978, we wrote the first (Belgian) edition of our Astrono-
mical Formulae for Calculators, the industry of microcomputers was
just starting its worldwide expansion. Because these 'personal com-
puters' were then not yet within reach of everybody, the aforesaid
book was written mainly for the users of pocket calculating machines
and therefore calculation methods requiring a large amount of compu-
ter memory, or many steps in a program, were avoided as far as pos-
sible, or kept to a minimum.

The present work is a greatly revised version of the former one.
It is, in fact, a completely nmew book. The subjects have been expan-
ded and the content has been improved. Changes were needed to take
into account new resolutions of the International Astronomical Union,
particularly the adoption of the new standard epoch J2000.0, while
moreover we profited by the new planetary and lunar theories con-
structed at the Bureau des Longitudes of Paris.

As Gerard Bodifée wrote in the Preface of our previous work:

"Anyone who endeavours to make astronomical calculations has
to be very familiar with the essential astronomical concep-
tions and rules and he must have sufficient knowledge of
elementary mathematical techniques. As a matter of fact he
must have a perfect command of his calculating machine,
knowing all possibilities it offers the competent user. How-
ever, all these necessities don't suffice. Creating useful,
successful and beautiful programs requires much practice.
Experience is the mother of all science. This general truth
is certainly valid for the art of programming. Only by expe-
rience and practice can one learn the innumerable tricks and
dodges that are so useful and often essential in a good pro-
gram.

Astronomical Algorithms intends to be a guide for the (professio-
nal or amateur) astronomer who wants to do calculations. An algorithm
(from the Arabic mathematician Al-Kh3rezmi) is a set of rules for get-
ting something done; for us it is a mathematical procedure, a se-
quence of reasonings and operations which provides the solution to
a given problem.
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This book is not a general textbook on astronomy. The reader will
find no theoretical derivations. Some definitions are kept to a mi-
nimum. Nor is this a textbook on mathematics or a manual for micro-
computers. The reader is assumed to be able to use his machine pro-
perly.

Except in a few rare cases, no programs are given in this book.
The reasons are clear. A program is useful only for one computer
language. Even if we consider BASIC only, there are so many versions
of this language that a given program cannot be used as such by
everybody without making the necessary changes. Every calculator
thus must learn to create his own programs. There is the added cir-
cumstance that the precise contents of a program usually depend on
the specific goals of the computation, that are impossible to anti-
cipate by anybody else.

The few programs we give are in standard BASIC. They can easily
be converted into FORTRAN or any other computer language.

Of course, in the formulae we still use the classical mathemati-
cal symbols and notations, not the symbolism used in program langua-
ges. For example, we write J/a instead of SQR(A), or a(l-e) in-
stead of Ax(1-E), or cos?x instead of COS(X)"2 or COS(X)%x2.

The writing of a program to solve some astronomical problem will
require a study of more than one chapter of this book. For instance,
in order to create a program for the calculation of the altitude of
the Sun for a given time on a given date at a given place, one must
first convert the date and time to Julian Day (Chapter 7), then cal-
culate the Sun's longitude for that instant (Chapter 24), its right
ascension (Chapter 12), the sidereal time (Chapter 11), and finally
the required altitude of the Sun (Chapter 12).

This book is restricted to the 'classical', mathematjical astrono-
my, although a few astronomy oriented mathematical techniques are
dealt with, such as interpolation, fitting curves and sorting data.
But astrophysics is not considered at all. Moreover, it is clear
that not all topics of mathematical astronomy could have been cove-
red in this book. So nothing is said about orbit determination, oc-
cultations of stars by the Moon, meteor astronomy, or eclipsing bi-
naries. For solar eclipses, the interested reader will find Besse-
lian elements and many useful formulae in Canon of Solar Eclipses
~-2003 to +2526 by H. Mucke and J. Meeus (Astronomisches Biiro, Vienna,
1983), or in Elements of Solar Eclipses 1951 to 2200 by the under-
signed (1989). Elements and formulae about transits of Mercury and
Venus across the Sun's disk are provided in our Transits (1989).
The latter two books are published by Willmann-Bell, Inc..

The author wishes to express his gratitude to Dr. S. De Meis
(Milan, Italy), to A.Dill (Germany), and to E. Goffin and C. Stey-
aert (Belgium), for their valuable advice and assistance.

Jean Meeus
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SoME. SYMBOLS AND ABBREVIATIONS

Eccentricity (of an orbit)

Altitude above the horizon

Radius vector, or distance of a body to the Sun, in AU
True anomaly

< H >0

Azimuth

Hour angle

Mean anomaly

Distance from Earth to Sun, in AU

Time in Julian centuries (36525 days) from J2000.0

Moo R

Right ascension

Declination

Obliquity of the ecliptic (&, is used for the mean obliquity)
Sidereal time (6, is the sidereal time at Greenwich)
Parallax

Time in Julian millennia (365250 days) from J2000.0
Geographical latitude

Geocentric latitude

oAl oM o0R

A Distance to the Earth, in AU
AT Difference TD - UT
Ae  Nutation in obliquity
Ay Nutation in longitude

AU Astronomical unit

INT Integer part of a number
JD  Julian Day

JDE  Julian Ephemeris Day

TD  Dynamical Time

UT  Universal Time
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Following an old, general astronomical practice, small superior sym-
bols are placed immediately above the decimal point, not after the
last decimal. For instance, 2895793 means 28.5793 degrees.

Moreover, note carefully the difference between hours with deci-

mals, and hours-minutes-seconds. For example, 1930 is not 1 hour
and 30 minutes, but 1.30 hours, that is 1 hour and 30 hundredths of
an hour, or 1 hour and 18 minutes.
Do not use the symbols ' and " for minutes and seconds of time:
they are used for minutes and seconds of a degree (or arcminutes and
arcseconds, respectively). Minutes and seconds of time have the sym-
bols m and s. For example,

the angle 23°26'44",  but the instant 15B22m07s.

Indeed, we have

1' = one minute of arc

1™ = one minute of time

1/60th of a degree
1/60th of an hour

Do not use the symbol = for 'approximately'. That symbol
means : plus or minus (or both). For instance, the square root of
25 is *5. Writing m = *3 is incorrect, because T is equal to
neither +3 nor -3; the correct symbol to be used here is =. For
example, 1002 = 1000.

In general, we shall use the 'scientific' form for calendar dates,
which reads from the largest to the smallest unit of time, for exam-
ple 1993 November 6. It contrasts with the common 'American’ form
(November 6, 1993), and with the 'Furopean' form (6 November 1993).
Anyway, it is recommended to spell out the month, because one per-
son's '11/6/93' is another's '6/11/93'.



Chapter 1

Hints and Tips

To explain how to calculate or to program on a computer is out of
the scope of this book. The reader should, instead, study carefully
his instructions manual. However, even then writing good programs
cannot be learned in the lapse of time of one day. It is an art
which can be acquired only progressively. Only by practice can one
learn to write better and shorter programs.

In this first Chapter, we will give some practical hints and
tips, which may be of general interest.

Trigonometric functions of large angles

Large angles frequently appear in astronomical calculations. In
Example 24.a we find that on 1992 October 13.0 the mean longitude
of the Sun is =-2318.19281 degrees. Even larger angles are found for
rapidly moving objects, such as the Moon and the bright satellites
of Jupiter, or the rotations of the planets (see, for instance, the
angle W in Step 9 of Example 4l.a).

It may be necessary to reduce the angles to the interval 0-360
degrees, because some pocket calculators or some program languages
give incorrect values for the trigonometric functions of large an-
gles. Try, for instance, to calculate the sine of 36 000030 dégrees.
The result must be 0.5 exactly.

Angle modes

The calculating machines do not calculate directly the trigonome-
tric functions of an angle which dis given in degrees, minutes and
seconds. Before performing the trigonometric functions, the angle
should be converted to degrees and decimals. Thus, to calculate the
cosine of 23°26'49", first convert this angle to 23.446 944 44 deg-
rees, and then use the COS function.
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There is the added complication that most computers can calculate
only in radians, not in degrees. It is an infernal nuisance having
to convert degrees to radians all the time, but on most computers
this has to be done before calculating a trigonometric function of
an angle given in degrees.

Right ascensions

Right ascensions are generally expressed in hours, minutes and
seconds of time. If the trigonome:ric function of a right ascension
must be calculated, it is necessary to convert that value to degrees
(and then to radians, if necessary). Remember that one hour corres-
ponds to 15 degrees.

Example 1.a — Calculate tan a, where a = 9h14m5558.
We first convert a to hours and decimals :
gh14m55$8 = 9 + 14/60 + 55.8/3600 = 9.248833333 hours.
Then, multiplying by 15,
a = 138973250.

Dividing this value by 180/m = 57.295779513... gives a in ra-
dians. We then find tan a = -0.877517.

The correct quadrant

When the sine, the cosine or the tangent of an angle is known,
the angle itself can be obtained by using the 'inverse' function
arcsine (ASN or ASIN), arccosine (ACS or ACOS), or arctangent (ATN
or ATAN). It should be noted that the functions arcsine and arc-
cosine are absent one some machines or in some languages, princi-
pally on almost all early microcomputers.

The inverse trigonometric functions (arcsine, arccosine, arctan-
gent) are not single valued. For instance, if sin o = 0.5, then
a = 30°, 150°, 390°, etc. For this reason, the electronic computers
return inverse trigonometric functions correctly over only half the
range of 0 to 360 degrees: arcsine and arctangent give an angle
lying between -90 and +90 degrees, while arccosine gives a value
between 0 and +180 degrees.

For example, try cos 147°. The answer is -0.8387, which reverts
to 147° when you take the inverse function. But now try cos 213°.
The answer is again -0.8387 which, when you take its arccosine,
gives 147°.

Hence, whenever the inverse function of SIN, COS or TAN is taken,
an ambiguity arises which has to be cleared up by one or other means
when it is necessary. Each problem must be examined separately.
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For instance, formulae (12.4) and (24.7) give the sine of the
declination of celestial body. The function arcsine then will
always give this declination in the correct quadrant, because all
declinations lie between —-90 and +30 degrees. So, no special test
should be performed here.

This is also the case for the angular separation whose cosine is
given by formula (16.1). Indeed, any angular separation is in the
range of 0° to +180°, which matches the range of the inverse cosine
function. ’

But consider the conversion from right ascension (a) and decli-
nation (8) to celestial longitude (A) and latitude (8) by means of
the following formulae

cos B sin A = sin § sin€ + cos § cos € sin a
cos B cos A = cos § cosa

Call A and B the second members. Then, dividing the first equa-
tion by the second one, we obtain tan X = A/B. Applying the func-
tion arctangent to the quotient A/B will yield the angle A between
-90° and +90°, with an ambiguity of +180°. This ambiguity can be
removed with the following test : if B<0, add 180° to the result.
However, some computer languages contain the important 'second' arc-
tangent function, ATN2 or ATAN2, which uses the two arguments A and
B separately and returns the angle in the proper quadrant. For in-
stance, suppose that A = -0.45, = -0.72; then ATN(A/B) will give
the angle 32°, while ATN2(A, B) will yield the correct value -148°,
or +212°.

The input of negative angles

Angles expressed in degrees, minutes and seconds can be input as
three different numbers (INPUT D, M, S). For instance, the angle
21°44'07" can be entered as the three numbers 21, 44, and 7. Then,
in the program the angle H in degrees is calculated by means of the
instruction H = D + M/60 + S/3600.

In such a case, care must be taken for negative angles. If the
angle is, for example, ~13°47'22", then this means -13° and -47'
and -22". 1In this case, the three numbers are D= -13, M= -47,
and S = -22. All three numbers have the same sign!

Mislead by the notation ~-13°47722", one can have the tendency to
input -13, +47 and +22 instead, and in that case the angle entered
would actually be -12°12'38'". It is possible to write the program in
such a way that similar errors are corrected automatically:

200 INPUT D,M,S
210 IF D<O THEN M=-ABS(M) : S = —ABS(S)
220 H=D+M/60+S/3600

In line 210, the minutes and seconds are made negative when the
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degrees are negative. The two ABS functions make sure that no error
is made when M and S are actually entered as negative numbers.

This procedure does not work, however, when the angle is between
0° and -1°. If the angle is, for instance, equal to -0°32'41", then
we have D = -0, which a computer automatically converts to 0, which
is not negative, so the machine will conclude that the angle is
+0°32'41" instead. One solution (in BASIC) is to enter the degrees
as a 'string' instead of a numeric variable, hence by means of
INPUT D$ instead of INPUT D. Then one can use the VAL function
and test on the first character of the string D$.

Powers of time

Some quantities are calculated by means of a formula containing
powers of the time (7, 72, 73, ...). It is important to note that
such polynomial expressions are valid only for values of T that are
not too large. For instance, the formula

e = 0.04629590 - 0.000027 3377 + 0.000 000079077 (1.1)

gives the eccentricity e of the orbit of Uranus; T is the time mea-
sured in Julian centuries (36525 days) from the beginning of the
year 2000. It is evident that this formula is valid for only a limi-
ted number of centuries before and after A.D. 2000, for instance for
T lying between -30 and +30. For |T| much larger than 30, the above
expression is no longer valid. For T = -3305.8 the formula would
give e =1, and an incompetent person, thinking that '"the computer
cannot make errors'", would deduce that in the year -328580 the orbit
of Uranus was parabolic and hence that this planet originates from
outside our solar system — bringing us in the realm of pseudoscience

In fact, the eccentricity e of a planet's orbit varies rather
irregularly in the course of time, though it cannot exceed a well-
defined upper limit. But for a time interval of a few millennia the
eccentricity can be accurately represented by a polynomial of the
second degree such as (1.1).

One should further carefully note the difference between periodic
terms (terms in sine and/or cosine), which remains small throughout
the centuries, and secular terms (terms in T, 72, T3, ...) which in-
crease more and more rapidly with time. A term in T2, which is very
small when T is small, becomes increasingly important for larger va-
lues of |T|. Thus, for large values of 7] it is meaningless to
take into account small periodic terms if terms in T2, etc., are
not taken into account in the calculation.

Avoiding powers
Suppose that one wants to calculate the polynomial

y = A+ Bx + Cx? + Dx® + Ex*
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with A, B, ¢, D and E constants, and x a variable. Now, one may
program the machine to calculate this polynomial directly term after
term and adding all terms, so that for each given x the machine ob-
tains the value of the polynomial. However, instead of calculating
all the powers of x, it appears to be wiser to write the polynomial
as follows:

y = A+x(B+x(C+x(D+ xE)))

In this expression all power functions have disappeared and only
additions and multiplications are to be performed. This way of ex-
pressing a polynomial is called Horner's method, an approach espe-
cially well suited for automatic calculation because powers are
avoided.

Also, it may be wise to calculate the square of a number A by
means of A%A instead of using the power function. We calculated
the squares of the first 200 positive integers on the HP-85 micro-
computer. Using the procedure

FOR I =1 T0 200
K=1"2
NEXT I

The complete calculation took 10.75 seconds. But when the se-
cond line was replaced by K = IxI, then the calculation time was
only 0.96 second!

To shorten a program

To make a program as short as possible is not always an art for
art's sake, but sometimes a necessity as long as the memory capaci-
ties of the calculating machine have their limits.

There exist many tricks to make a program shorter, even for sim-
ple calculations. Suppose that one wants to calculate the sum S of
many terms :

s = 0.0003233 sin (2.6782 + 15.542047T)
+ 0.0000984 sin (2.6351 + 79.629807T)
+ 0.0000721 sin (1.5905 4+ 77.552267T)
+0.0000198 sin (3.2588 + 21.329937)
+ Liiiei i

First, because the coefficients of all sines are small numbers,
one can avoid typing in all those decimals by taking as unit the
last decimal (10-7 in this case). So, instead of 0.0003233, etc., we
use 3233, etc. Then, after the sum of the terms has been calculated,
we divide the result by 107.

Secondly, it would be unwise to write all those many terms expli-
citely in the program. Instead, we could make use of a so-called
loop. Each of the above terms is of the form A sin(B+CT), so we
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put all values &, B, C as DATA in the program. Suppose there are 50
terms. Then the program will look like this:

100 S=0

110 RESTORE 170

120 FOR I =1 T0 50

130 READ A, B, C

140 S =S+ AxSIN(B+CxT)

150 NEXT 1

160 S = S$/10000000

170 DATA 3233, 2.6782, 15.54204, 984, etc....

Safety tests

Include a safety test in case an 'impossible' situation might
occur, for example in order to stop the calculation when, after
a specified number of iterations, the required accuracy has not
been reached.

Or consider the case of the occultation of a star by the Moon. In
a program for local circumstances, the times of disappearance and of
reappearance of the star are calculated. It may happen, however,
that the star is not occulted as seen from the given place; in such
a case, of course, the times of ingress and egress do not exist, and
trying to calculate them would correspond to calculating the square
root of a negative number. To avoid this problem, the program should
be written in such a way that first of all the value of the star's
least distance to the center of the lunar disk (as seen from the
given place) is calculated; if, and only if, this distance is smal-
ler than the radius of the Moon's disk, can the times of ingress and
egress be calculated.

Debugging

After a program has been written, it must be checked for errors,
which are called bugs. The process of locating the bugs and correc-
ting them is called debugging. Several types of errors can occur
when programming in any language:

a. syntax errors violate the rules of the language, such as spelling
a forgotten parenthesis, or other conventions specific to each
language. For instance, in BASIC,

A = SIM(B) should be A
P = SQR(ABS(A+B) should be p

i

SIN(B)
SQR(ABS(A+B))

0

b. semantic errors, such as a forgotten program line. For instance,
GOTO 800 when no line 800 exists in the program.

¢. run-time errors, which occur during the execution of a program.
For example:
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A = SQR{(B). The variable B is calculated during execution of
the program, but its value happens to be negative;

ON X GOTO 1000, 2000, 3000, but X is larger than 3.

d. other programmer's errors. The following ones happen frequently :

e Typing the letter 0 ('oh') instead of the number zero (0 or #), or
vice versa, or typing the number 1 instead of the letter I.
A cross reference list, if available, can help here.

e The name of a variable is used twice in the program (with diffe-
rent meanings).

e Error in copying down a numerical constant (such as 127.3 instead
of 127.03, or 15 instead of .15), typing an % instead of a +, etc.

e Incorrect units are used. For instance, an angle is expressed in
degrees instead of radians, or a right ascension expressed in hours
has not been converted to degrees or radians.

e The angle is in the wrong quadrant. See 'The correct quadrant' on
page 8.

¢ Rounding errors. For example, the cosine of an angle d has been
calculated, from which one wants to deduce that angle. This does
not work well when the angle is very small. Indeed, if 4 is very
small, its cosine is almost equal to 1 and varies quite slowly as
a function of d. In that case, the value of d is ill-defined and
cannot be calculated accurately.

For instance, cos 15" = 0.999999997 but cos 0" is 1 exactly.

If one expects that the angle d can be very small, then its value
should be calculated by means of another method. See, for instan-
ce, Chapter 1l6.

e An iteration procedure which does not guarantee convergence in
some cases. See Chapters 5 (Iteration) and 29 (Equation of Kep-
ler).

e An incorrect method of calculation has been used. For example, to
interchange two numbers X and Y, an extra variable A is needed (*):

(*) This is not quite exact. Theoretically, it is possible to inter-
change two numbers without using a third, auxiliary variable, as

follows :
X =X+Y
Y=X-Y
X=X-Y

But, of course, this is rather a curiosity than a useful method,
because the execution of these operations require extra computer
time, and moreover because rounding errors can occur.
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Incorrect procedure Correct procedure
Y =X A=Y
X =Y Y =X
X =A

In QUICKBASIC, GWBASIC and some other BASIC versions, there exists
the SWAP function: SWAP (X, Y) interchanges the numbers X and Y.

Checking the results

Of course, a program should not only be ‘grammatically' correct:
it must give correct results. Test your program using a known solu-
tion. If, for instance, you wrote a program for the calculation of
planetary positions or for the times of lunar phases, compare your
results with the values given in an astronomical almanac.

Test your program for some 'special' cases. For instance, are the
results still correct for a negative value of the declination? Or
for a declination lying between 0° and -1°7 Or if the observer's
latitude is exactly zero? Or for negative values of the time T7



Chapter 2

About Accuracy

The following topics will be considered in this Chapter: the accu-
racy needed for a particular problem, the accuracy with which a
given program language works, and finally the accuracy of the pub-
lished results.

The accuracy needed for a given problem

The accuracy needed in a calculation depends on its aim. For ex-
ample, if one wants to calculate the position of a planet with the
goal of obtaining the times of rising or setting, an accuracy of
0.01 degree will be sufficient. The reascn is evident: the apparent
diurnal motion of the celestial sphere corresponds to a rotation
over one degree during a time interval of four minutes, and so an
error of 0.01 degree in the object's position will result in an er-
ror of only 0.04 minute (approximately) in its time of rising or
setting. Taking hundreds of periodic terms into account in order to
obtain the planet's position with an accuracy of 0'".01 would just be
a waste of effort and of computer time for this problem.

But if the position of the planet is needed to calculate the oc-
cultation of a star by that planet, then an accuracy of better than

1" will be necessary by reason of the small size of the planet's
disk.

A program written for one aim may not be suitable for another ap-
plication. Suppose that, for the calculation of the position of a
star, a program uses the low-accuracy method for the precession (see
Chapter 20). While the results will be good enough for the observer
who wants to find celestial objects with a telescope on a parallac-
tic mounting, that program will be completely worthless when accu-
rate results are required, for instance in occultation work, or for
the calculation of close conjunctions.

If a given accuracy is required, one has to use an algorithm that

15
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really provides this precision. John Mosley [1] mentions a commerci-
ally available program which calculates planetary positions; but be-
cause perturbations are not considered, the positions of Saturn,
Uranus and Neptune can be up to 1 degree off, even though displayed
to the nearest arcsecond!

To obtain a better accuracy it is often necessary to use another
method of calculation, not just to keep more decimals in the result
of an approximate calculation. For example, if one has to know the
position of Mars with an accuracy of 0.1 degree, it suffices to use
an unperturbed elliptical orbit (Keplerian motion). However, if the
position of Mars is to be known with a precision of 10" or better,
perturbations due to the other planets have to be calculated and the
program will be a much longer one.

The programmer, who knows his formulae and the desired accuracy
in a given problem, must himself consider which terms, if any, may
be omitted in order to keep the program handsome and as short as
possible. For instance, the mean geometric longitude of the Sun, re-
ferred to the mean equinox of the date, is given by

L = 280°27'59"\.244 + 129602771".380T + 1'".091572

where T is the time in Julian centuries of 36525 ephemeris days from
the epoch 2000 January 1.5 TD. In this expression, the last term
(secular acceleration of the Sun) is smaller than 1" if {7| < 0.95,
that is, between the years 1905 and 2095. If an accuracy of 1" is
sufficient, the term in 72 may thus be dropped for any instant in
that period. But for the year +100 we have T = -19, so that the last
term becomes 394", which is larger than 0.1 degree.

The computer's accuracy

This is a much more complex problem. The program language should
work with a sufficient number of significant digits. (Note that this
is not the same as the number of decimals! For instance, the number
0.0000183 has seven decimals, but only three significant digits. The
significant digits of a number are those digits which are left over
when the leading and trailing zeros are suppressed).

On a machine rounding operations to 6 significant figures, the
result of 1000000 + 2 will just be 1000000.

There can be dangerous situations, for instance when the diffe-
rence is made of two nearly-equal numbers. Suppose that the follo-
wing subtraction is performed:

6.92736 - 6.92735 = 0.00001.

Each number is given to six figures, but subtracting them gives a
number with just one significant figure! Moreover, the two given
numbers perhaps have already been rounded. If such is the case, then
the situation can even be worse. Suppose that the two numbers are
actually 6.927 3649 and 6.927 3451. Then the correct result is
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0.0000198, which is almost twice the previous result!

Six or eight significant digits, as was the general rule for the
early microcomputers, or is nowadays often the case in ‘'single-
precision', are generally not sufficient for mathematical astronomy.

For many applications, it is necessary that the machine calcula-
tes with a larger number of significant digits than it is required
in the final result. Let us consider, for example, the following
formula giving the mean longitude L' of the Moon for any given in-
stant, in degrees (Chapter 45):

L' = 218.316 4591 + 481267.881342367T
- 0.001 326872 + 0.0000019 73

where T is the time measured in Julian centuries of 36525 days elap-~
sed since the standard epoch 2000 January 1.5 TD (JDE 2451 545.0).
Suppose now that we wish to obtain the Moon's mean longitude to an
accuracy of 0.001 degree. Because longitudes are restricted to the
interval 0-—360 degrees, one might think that a machine calculating
with only six significant digits internally will be just sufficient
for our purpose (3 digits before, and 3 digits after the decimal
point). This is not the case in the present problem, however, be-
cause L' can reach large values before to be reduced to less than
360 degrees.

For instance, let us calculate L' for T = 0.4, which corresponds
to 2040 January 1 at 12B TD. We find L' = 192 725°469, which redu-
ces to 125° 469, the correct answer. But if the machine works with
only six significant digits, it will not find L' = 192725° 469, but
rather 192 725° (six digits!), which will reduce to 125°, so in this
case the final result is only to the nearest degree, and the error
is 0.469 degree or 28'; and this happens only 40 years after the
starting epoch. Under such circumstances it is just impossible to
calculate eclipses or occultations.

To find out with which internal accuracy a computer works, the
following short program (in BASIC) can be used.

10 X=1

20 J=0

30 X=X*x2

40 IF X+1 <> X THEN 60
50 GOTO 80

60 J=J+1

70 GOTO 30

80 PRINT J, J%0.30103
90 END

Here, J is the number of significant bits in the mantissa of a
floating number, while 0.30L03J is the number of significant di-
gits in a decimal number. The constant 0.30103 is logyg 2. For in-
stance, the HP-85 computer gives J = 39, whence 11.7 digits. With
the HP-UX Technical Basic 5.0, working on the HP-Integral micro-
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computer, we find J = 52, whence 15.6 internal digits. The QUICK-
BASIC 4.5 gives J = 63, whence 19.0 digits.

However, this accuracy refers only to simple arithmetics, not to
the trigonometric functions. Although the Toshiba with GWBASIC has
J =55, that is 16.6 internal digits, it gives the sines with only
7 correct decimals; the last 9 figures are completely wrong !

One rapid manner to check the accuracy of trigonometric functions
is PRINT 4*ATN(1). If the computer works in radians, this must give
the famous number T = 3.14159265358979... Or one may calculate
the sine of an angle whose value is accurately known, for example

SIN (0.61 rad) = 0.572867 460100 48...

Rounding is inevitable in a computer. Consider for instance the
value 1/3 = 0.33333333... Because the machine cannot handle an in-
finite number of decimals, such a number must necessarily be trun-
cated somewhere.

Rounding errors can accumulate from one calculation to the next.
In most cases this is of no importance because the errors almost
cancel each other, but in some arithmetical applications the accumu-
lated error can increase beyond any limit. Although this topic is
outside of the scope of this book, we shall mention two cases.

Consider the following program.

10 X=1/3

20 FOR I =1 TO 30
30 K= (9%X+1)%X -1
40 PRINT I, X

50 NEXT I

60 END

The operation on line 30 actually replaces X by itself. Yet on
most computers the results diverge. The above-mentioned HP-UX Tech-
nical Basic yields

0.333 333 333 333 308 after 4 steps
0.333 326 162 117 054 after 14 steps
0.215 899 338 763 055 after 19 steps
286.423 .... after 24 steps

and a value of the order of 102 after 30 steps!

The difference in accuracy between microcomputers or even hand-
held calculators can be demonstrated by a simple test [2]: repea-
tedly squaring the number 1.000 0001. After 27 times, the result to
10 significant figures must be 674 530.4707. The results for some
machines or programming languages are as follows:

674 494.06 on the HP-67 calculator
674 514.87 on the HP-85
674 520.61 on the TI-58 calculator

674 530.4755 on the HP-Integral (HP-UX Techn. Basic)
674 530.4755 in QUICKBASIC 4.5
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But that is still not the end of the story. There are two basi-
cally different ways for the internal representation of numerical
information into a computer. Some machines, such as the older HP-85,
use the BCD (Binary Coded Decimal) scheme for representing numbers
internally, but in most other cases the binary representation is
used.

BCD is a scheme where the actual value of each digit of a number
is stored individually. This allows numbers to be represented exact-
ly, to the specified digits of precision of the given machine or
program language. Binary, on the other hand, represents all numbers
as some combination of powers of 2. In binary, fractions are also
represented as being powers of 2, so it is impossible to represent
numbers which are not exact combinations of negative powers of 2 in
a binary system. For instance, 1/10 is not rationally expressed as
combinations of negative powers of 2, because 1/10 = 1/16 + 1/32 +
1/128 ....

Binary arithmetic functions are usually faster in their execution
than BCD counterparts, but the inconvenience is that some numbers,
even with a small number of decimals, are not represented exactly.

As a consequence, the result of an arithmetic operation may be
incorrect, even when numbers with only a few decimals are involved.
Suppose that X = 4.34. Then the correct result of the operation
H = INT(100% (X - INT(X))) is 34. However, many computer languages
give H = 33 here. The reason is that in this case the value of X is
represented internally as 4. 3399999998, or something like that.

Another surprising example is

2 +0.2+0.2+ 0.2 +0.2+0.2-3.

On many computers, the result is not zero! On the HP-Integral,
using the HP-UX Technical Basic 5.0, the result is 8.88 x 10716,
But on the same machine 0.2 + 0.2+ 0.2+ 0.2+4+0.2+4+2 -3 does
give zero, so the order in which the operations are performed can
be of importance here!

Surprisingly, 2+ (5*0.2)-3 gives exactly zero on the HP-
Integral, and so does the following:

A=0.2+0.2+0.2+0.2+0.2
B=2+A
C=B-3
PRINT C

Consider the following program:

10 FOR I =0 TO 100 STEP 0.1

20 U=1
30 NEXT I
40 PRINT U
50 END

Here, I and U take the successive values from 0 to 100 with steps of
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0.1, and the last value of U must be exactly 100. The HP-85 does
give 100 indeed, but the HP-Integral gives 99.999 999 999 9986, which
can have a disastrous consequence in some applications. The error is
due to the fact that the step value of 0.1 is translated into binary
as 0.0999999.... The difference with 0.1 is very small but, because
there are 1000 steps, the final error is 1000 times as large as that
small difference. In this case, one remedy may consist in taking an
integer value for the step:

10 FOGR J =0 TO 1000
20 I =2J/10

30 U=1

40 NEXT J

50 PRINT U

60 END

We may find other surprises with

A= 3% (1/3)
PRINT INT(A)

whose result is correctly 1 on some computers, but zero on others.
Or try, for instance, A =0.1, PRINT INT(1000*A).

Another interesting test is

INPUT A

= A/10
C=10%B
PRINT A-C

The result must be zero. But for some numbers A the answer can be
different.

One easy way to find out if a computer language works in BCD or
not, consists of looking at the largest possible integer value (that
is, a number defined as an INTEGER). If this is a 'nice, round' num-
ber, then this indicates that the machine works in BCD. For example,
on the HP-85 that largest integer is 99999 (or 105~ 1). But if the
largest possible integer is a 'strange' number (in fact, a power of
2 minus one), then this means that the computer does not work in BCD.
On the old TRS-80, that largest integer is 32767 (or 215 - 1), while
for the HP-UX Technical Basic 5.0 on the HP-Integral it is
2147 483647 (or 231 - 1).

Rounding by inexact arithmetics can yield other surprising re-
sults. On most microcomputers, the result of SQR(25)-5 1is not
zero! This can be a problem if testing on the result. Is 25 a per-
fect square? One might think the answer is no, since the computer
tells us that SQR(25) — INT(SQR(25)) is not zero!
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Rounding the final resulits

Results should be rounded correctly and meaningfully, where it is
necessary.

Rounding should be made to the nearest value. For instance, 15.88
is to be rounded to 15.9, or to 16, not to 15. However, calendar da-
tes and years are exceptions. For example, March 15.88 denotes an
instant belonging to March 15: it means 0.88 day after March 15, 0h,
So, if we read that an event occurs on March 15.88, it takes place
on March 15, not on March 16. Similarly, 1977.69 denotes an instant
belonging to the year 1977, not to 1978.

Only meaningful digits should be retained. For example, Miiller's
formula for calculating the visual magnitude of Jupiter is

m=-8.93 +5 log rA

where r is Jupiter's distance to the Sun, A its distance to the
Earth (both in astronomical units), and the logarithm is to the base
10. Now, on 1992 May 14, at 0R TD, we have

5.417 149
5.125382

r

A

non

whence m= -1.712514898. But giving all these decimals, under the
pretext that they were given like this by the computer, would be ri-
diculous and would give the reader a false impression of high accu-
racy. Since the constant ~8.93 in Miiller's formula is given to 0.0l
magnitude, no higher accuracy can be expected in the result. And, in
any case, the meteorological phenomena in the atmosphere of Jupiter
are such that the magnitude of that giant planet cannot be predicted
with an accuracy better than 0.01 or even 0.1.

As another example, John Mosley [3] mentions a commercially avail-
able program giving rising and setting times of heavenly bodies to
the nearest 0.1 second, which is impossibly precise.

Some 'feeling' and sufficient astronomical knowledge are necessary
here. For instance, it would be completely irrelevant to give the
illuminated fraction of the Moon's disk accurate to 0.000 000 001,

The rounding should be performed after the whole calculation has
been made, not before the start or before the input of the data into
the computer.

Example: Calculate 1.4 + 1.4 to the nearest integer. If we first
round the given numbers, we obtain 1+ 1 = 2. In fact, 1.4+ 1.4=
2.8, which is to be rounded to 3.

Here is another example. At its opposition date, 1996 July 18,
the declination of Neptune is & = -20°24'. What is the planet's
altitude h, at the transit through the southern meridian, at Some-
berg Observatory, Germany, to the nearest degree? The observatory's
latitude is ¢ = 4+50°23'. The formula to be used is

hy = 90° — ¢ + 6
The answer is h, = 90° - 50°23' - 20°24' = 19°13', whence 19°.
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Rounding ¢ and 8§ to the nearest degree before the calculation
would yield the incorrect result 90° - 50° - 20° = 20°.

A similar error occurs when distances, already rounded to the
nearest mile, are converted to kilometers. In this case the value
of 17 km, for instance, will never be reached, because

10 miles will give 16.09 km, which is rounded to 16 km,
1! miles will give 17.70 km, which is rounded to 18 km.

Right ascensions and declinations. — Since 24 hours correspond to
360 degrees, one hour corresponds to 15°, one minute of time corres-
ponds to 15 minutes of arc, and one second of time to 15 seconds of
arc: during a time interval of one second the Earth rotates over an
arc of 15",

FYor this reason, if the declination of a celestial body is given,
for instance, to 1", then the right ascension should be given to the
nearest tenth of a second of time, since otherwise the declination
would be given with a much greater accuracy than the right ascension.
The following table gives the approximate correspondence between the
accuracies in right ascension (@) and in declination (§). For exam-
ple, if & is given with an accuracy of 1’, then a must be given to
the nearest 0.1 minute of time. As examples, we give the position of
Nova Cygni 1975 with different accuracies.

in a in § Example (Nova Cygni 1975)

o 0°.1 o = 21h10® 5 = +47°.9

0™ 1 1! 21P09% 9 +47°577

18 0'.1 21Ppg™53s +47°56'.7
051 I 21709™525, 8 +47°56' 41"

As a final remark, let us mention that trailing zeros can be im-
portant. For instance, 18.0 is not the same as 18. The former value
means that the actual number lies between 17.95 and 18.05, while the
second value has been rounded to the nearest integer and can actual-
ly be equal to any number between 17.5 and 18.5. For this reason,
trailing zeros must be given in the result to indicate the accuracy:
a star of magnitude 7 is not the same as a star of magnitude 7.00.
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Chapter 3

Interpolation

The astronomical almanacs or other publications contain numerical

tables giving some quantities y for egquidistant values of an argu-
ment x. For example, y is the right ascension of the Sun, and the
values x are the different days of the year at OB TD.

Interpolation is the process of finding values for instants,
quantities, etc., intermediate to those given in a table.

Of course, the 'table' should not necessarily be taken from a
book, but may have been calculated in a computer program. Suppose
that the position of the Sun is to be calculated for many (>3)
instants of the same day. Then one may calculate the Sun's position
for 0", 121 and 24h of that day, and then use these values to per-
form the interpolation for every given instant. This will require
less computer time than calculating the position of the Sun directly
for every instant.

In this Chapter we will consider two cases: interpolation from
three or from five tabular values. In both cases we will also show
how an extremum or a zero of the function can be found. The case of
only two tabular values will not be considered here, for in that
case the interpolation can but be linear, and this will give no dif-
ficulty at all.

Three tabular values

Three tabular values y;, Yy;, y3 of the function y are given,
corresponding to the values x;, x5, x3 of the argument x. Let us
form the table of differences

X3 Yi
a

X3 1) c 3.D
b

X3 Ys

23
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where a=y; -y; and b = y3 - y; are called the first differences.
The second difference ¢ is equal to b - a, that is

c =y tys - 2y,

Generally, the differences of the successive orders are gradually
smaller. Interpolation from three tabular values is permitted when
the second differences are almost constant in that part of the table,
that is, when the third differences are almost zero. Some good sense
and experience are needed here. For example, the Moon's position can
be interpolated accurately from three positions given at hourly in-
tervals, but not when the interval is one day.

Let us consider, for instance, the distance of Mars to the Earth
from 5 to 9 November 1992, at O® TD. The values are given in astro-
nomical units, and the differences are in units of the 6th decimal :

1992 November 5 0.898 013

-6904

6 0.891109 +21
~6883 +2

7 0.884 226 +23
-6860 +2

8 0.877 366 +25
-6835

9 0.870531

Since the third differences are almost zero, we may interpolate
from only three tabular values.

The central value x, must be chosen in such a manner that it is
that value of x that is closest to the value of x for which we want
to perform the interpolation. For example, if from the table above
we must deduce the value of the function for November 7 at 22140,
then y, is the value for November 8.00. In that case, we should
consider the tabular values for November 7, 8 and 9, namely the table

November 7 y; = 0.884226
8 y, = 0.877366 (3.2)
9 y; = 0.870531

and the differences are

a -0.006 860
¢ = +0.000025

b = -0.006835

Let n be the interpolating factor. That is, if the value y of
the function is required for the value x of the argument, we have
n = x - x, in units of the tabular interval. The value n is posi-
tive if x> x,, that is for a value 'later' than x,, or from x, to-
wards the bottom of the table. If x precedes x,, then n<O0.
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If y, has been correctly chosen, then n will be between -0.5 and
+0.5, although the following formulae will also give correct results
for all values of n between -1 and +1.

The interpolation formula is

y=y2+—3~(a+b+nc) (3.3)

Example 3.a — From the table (3.2), calculate the distance of
Mars to the Earth on 1992 November 8, at 4h21m TD.

We have 4b21™ = 4.35 hours and, since the tabular interval is 1 day
or 24 hours, n = 4.35/24 = +0.18125.

Formula (3.3) then gives y = 0.876125, the required value.

If the tabulated function reaches an extremum (that is, a maximum
or a minimum value), this extremum can be found as follows. Let us
again form the difference table (3.1) for the appropriate part of
the ephemeris. The extreme value of the function then is

ym = yZ -_ i_‘%_*'_@_)i (3_4)

8c

and the corresponding value of the argument x is given by

athb
2¢

ng = -~ (3.5)

in units of the tabular interval, and again measured from the central
value x,.

Example 3.b — Calculate the time of passage of Mars through the
perihelion in May 1992, and the value of its ra-
dius vector at that instant.

The following values for the distance Sun—Mars have been calculated
at intervals of four days:

1992 May 12.0 TD 1.381 4294
16.0 1.381 2213
20.0 1.381 2453

The differences are

~-0.000 2081

[
]

c = +0.000 2321

o
[]

+0.000 0240
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from which we deduce
yn = 1.3812030 and n, = +0.39660

Hence, the least distance from Mars to the Sun is 1.3812030 AU. The
corresponding time is found by multiplying 4 days (the tabular in-
terval) by +0.39660. This gives 1.58 640 days, or 1 day and 14 hours
later than the central time, that is 1992 May 17, at 14h TD.

[0f course, if n, were negative, the extremum would take place
earlier than the central time.]

The value of the argument x for which the function y becomes
zero can be found by again forming the difference table (3.1) for
the appropriate part of the ephemeris. The interpolating factor cor-
responding to a zero of the function is then given by

',
Be = T ¥ Db+ cn, (3.6)

Equation (3.6) can be solved by first putting n, = 0 in the se-
cond member. Then the formula gives an approximate value for n,.
This value is then used to calculate the right hand side again,
which gives a still better value for n,. This process, called itera-
tion (Latin: iterare = to repeat), can be continued until the value
found for n, no longer varies, to the precision of the computer.

Example 3.c — Given the following values for the declination of
Mercury,
1973 February 26.0 TD  -0°28' 13”4
27.0 +0 06 46.3
28.0 +0 38 23.2

calculate when the planet's declination was zero.

Firstly, we convert the tabulated values into seconds of a degree
and then form the differences:

y, = -1693.4
a = +2099.7

y, = + 406.3 c = -202.8
b= +1896.9

y3 = +2303.2

Formula (3.6) then becomes

-812.6
+3996.6 - 202.8n,

n, =

Putting n, = 0 in the second member, we find n, = -0.20332.
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Repeating the calculation, we find successively -0.20125 and
-0.20127. Hence, n, = -0.20127 and therefore, the tabular interval
being one day, Mercury crossed the celestial equator on

February 26.79873

1973 February 27.0 - 0.20127 =
= February 26, at 19R10% TD.

For the calculation of the value of the interpolating factor n,
for which the function is zero, formula (3.6) is excellent when, as
in Example 3.c, the function is 'almost a straight line' in the in-
terval considered. If, however, the curvature of the function is
important, use of the formula may require a large number of itera-
tions; moreover, it can lead to divergence even when starting
from an almost correct value for n,. In this case, a better method
for calculating n, is as follows: the correction to the assumed
value of n, is
2y, + n,(a+b+cn,)

a+b+ 2cn,

An, (3.7)

The calculation should be repeated, using the new value of n,,
until n, no longer varies.

Example 3.d — Consider the following values of a function:

x; = -1 y, = -2
xo = 0 y, = +3
x3 = +1 yy = +2

These three points actually define

y the parabola y = 3 + 2x - 3x2,
which has a strong curvature bet-
~ ween x = -1 and x =+1 (see the
\ Figure at left).
] \ Starting with n, = 0, formula
/ \ (3.6) gives successively
+2 @
! \ -1.5
1 -0.461538...
/B TSR -0.886363. ..
! -0.643902...
-1y +1 -0.763027...
+ 7 —+ > X -0.699450...
! and so on. The correct value of
| - the sixth decimal is obtained af-
[ ter not less than 24 iterations.
But if we use formula (3.7), again
* starting with n, = zero, we find
successively
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-1.5

—-0.886 363 636 364
-0.732 001 693 959
-0.720818 540 935
-0.720759221726
-0.720759 220 056
-0.720759220056

so the twelfth decimal is correctly obtained with only six itera-
tions in this case.

Five tabular values

When the third differences may not be neglected, more than three
tabular values must be used. Taking five consecutive tabular values,
y; to ys, we form, as before, the table of differences

Y1
A
Yy E
B H
Us F K
n c J
Y G
D
Ys

where A=y, ~y;, H=F - E, etc. If n is the interpolating fac-
tor, measured from the central value y; in units of the tabular in-
terval, positively towards y, , the interpolation formula is

2 2 . 2 2 .
gy = y3 +-'2’-(B+C) + 2 F 4 -M(H+J) grin?-1) ”ZA D

2 12
which may also be written (3.8)
B+C H+J F K H+J
v = g3t o5 -"557) + 02 (5 - 57) + 0 )+ mb (57
2 24
Example 3.e = Consider the following values of the equatorial

horizontal parallax of the Moon :
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1992 February 27.0 TD 54'36"125
27.5 S4 24.606
28.0 54 15.486
28.5 54 08.694
29.0 54 04.133
The differences (in ") are
a=-11.519
E = +2.399
B= -9.120 H = -0.071
F = +2.328 K = -0.026
c= -6.792 J = -0.097
G = +2.231
D= =-4.,561

We see that the third differences (H and J) may not be neglected,
unless an accuracy of about 0"1 is sufficient.

Let us now calculate the Moon's parallax on February 28 at 3h2Qm
TD. The tabular interval being 12 hours, we have

= = == e = 277
n = 12 = +0.277 7778.

Formula (3.8) then gives
y = 54'15".486 - 2'"117 = 54'13".369.

The interpolating factor n; corresponding to an extremum of the
function can be obtained by solving the equation

6B+ 6C - H - J+ 3n,2(H+J) + 2n°K

M = K — 12F (3.9)

As before, this may be performed by iteration, firstly putting
nyg =0 in the second member. Once n, is found, the corresponding
value of the function can be calculated by means of formula (3.8).

Finally, the interpolating factor n, corresponding to a zero of
the function may be found from

—24y; + n,2 (K~ 12F) - 2n2(H+J) - ni K
n, = Ya z ) (3.10)
2(6B+6C - H - J)

where, again, n, can be found by iteration, starting by putting
n, = 0 in the second member.

The remark made on p. 27 about formula (3.6) holds here too. If
the curvature of the function in the considered interval is impor-
tant, a better method for calculating n, is as follows. Calculate

u= X g Bt P

B+ C
24 12

- Q=5 -1

ol
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Then the correction to the assumed value of n, is

Mnl + Nn2 + Pn2 + Qn, + y,

4Mn3 + 38n,2 + 2Pn, + Q

An, = - (3.11)

and, again, the calculation should be repeated with the new value of
n, until n, no longer varies.

Exercise. — From the following values of the heliocentric la-
titude of Mercury, find the instant when the latitude was zero, by
using formula (3.10).

1988 January 25.0 TD -1°11'21"23
26.0 -0 28 12.31
27.0 +0 16 07.02
28.0 +1 01 00.13
29.0 +1 45 46.33
Answer : Mercury reached the ascending node of its orbit for n, =

-0.361 413, that is on 1988 January 26.638 587, or January 26 at
15h20m TD.

Using only the three central values and formula (3.6), one would
find n, = -0.362166, a difference of 0.000753 day, or 1.1 minute,
with the previous result.

Important remarks

1. Interpolation cannot be performed on complex (*) quantities di-
rectly. These quantities should be converted, in advance, into a
single, suitable unit. For instance, angles expressed in degrees,
minutes and seconds should be converted either to degrees and deci-
mals, or to arcseconds, before they can be used for interpolation.

2. Interpolating times and right ascensions. — We draw attention to
the fact that times and right ascensions jump to zero when the value
of 24 hours is reached. This should be taken into account when in-
terpolation is performed on tabulated values. Suppose, for example,
that we wish to calculate the right ascension of Mercury for the in-
stant 1992 April 6.2743 TD, using the three following values:

1992 April 5.0 TD o = 23R51m56504
6.0 23 56 28.49
7.0 0 01 00.71

(*) By definition, a complex number is a number composed of diffe-
rent units, having among them a ratio different from a power of
10. Examples of 'complex' quantities: 10R29m55s8; 23°26'44";
£, shillings, pence; yd, ft, inch; a + bi.



3. Interpolation 31

Not only is it necessary to convert these values to hours and de-
cimals, but the last value should be written as 24101®(008.71, other-
wise the machine will consider that, from April 6.0 to 7.0, the va-
lue of a decreases from 23156™.... to 0OhOIm....

We find a similar situation in some other cases. For instance,
here is the longitude of the central meridian of the Sun for a few
dates :

1992 June 14.0 UT 37°96
15.0 24.72
16.0 11.48
17.0 358.25

It is evident that the variation is approximately -13.24 degrees
per day. Hence, one should not interpolate directly between 11.48
and 358.25. Either the first value should be written as 371°.48, or
the second value should be considered as being -1.75 degrees.

3. As much as possible, avoid making an interpolation for |n| >0.5.
In any case, the interpolating factor n should be restricted between
the limits -1 and +1. This same rule applies to the calculation of
an extremum (n,) or a zero (n,) of the function. Choose the central
value of y in such a manner that this is the tabular value which is
closest to the extremum or to the zero. Of course, the exact value
of ny, or n, is not known in advance, but an approximate value can
be calculated first, after which the choice of the central value

(ys or y,) of the function can be changed accordingly.

If the chosen value is too far from the zero or from the extre-
mum, the formulae given in this Chapter for calculating these points
will give incorrect, or even absurd results. Let us give an example.
We know that sin x reaches a maximum for x = 90°. But let us con-
sider the following sines, with ten decimals :

sin 29° 0.484 8096202
sin 30° 0.500 000 0000
sin 31° 0.515038 0749
sin 32° 0.529 919 2642
sin 33° 0.544 6390350

Using the three central values, formula (3.4) gives y, = 1.22827
(instead of 1 exactly), and (3.5) yields np = +95.35, or the maximum
taking place at 31° 4+ 95°35 = 126°.35 instead of 90°.

Using all five values, formula (3.9) gives ng, = +57.30, whence
the maximum taking place at 88°30, from which the value of 0.99348
is found for that maximum. Although these results are much better
than those obtained with only three points, they are still unsatis-
factory !
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Interpolation to halves

If the values Y3, Yz, Yzs Yy, of the function are given for four
equally-spaced abscissae x;, x,, x3 and x,, then the value of the
function for the point exactly half-way between x, and x3; is easily
calculated:

9 (y, + ys) - Yy — Y,
y = 16 (3.12)

This formula is valid when the fourth differences of the tabula-
ted values are negligible.

Example 3.f — Given the following values for the apparent right
ascension of the Moon,

1994 March 25 gh TD a = 10h18m483732

10 10 23 22.835
12 10 27 57.247
14 10 32 31,983

calculate the right ascension for 11P00® TD.

Converting the minutes and seconds, after 10", into seconds, we
change the four given data into

y, = 1128.732 seconds
y, = 1402.835
yy = 1677.247
y, = 1951.983

Formula (3.12) then gives y = 1540.001 seconds = 25405001, so
that the required right ascension is o = 10R25m408001.

Interpolation with unequally-spaced abscissae :
Lagrange's interpolation formula

When the abscissae (the values of the independent x coordinate)
of the given points are not equally spaced, the interpolation for-
mula of Lagrange may be used. (Of course, this formula may also be
used when the points are evenly spaced).

This simple formula, developed by the French mathematician J. L.
Lagrange (1736-1813), determines a polynomial of degree n- 1 mat-
ching n given points exactly. If the given points are xj, y;

(i =1 to n), the formula is, for a given x,

g = yrLy + ysLy + .nee + ynLp (3.13;
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‘X'

n
Li= I—I

3
3

A
><

#i

The IT means that the product of the fractions should be calcula-
ted for all values j = 1 to n, except for j = i. That is,

Ly

(x ~ %) (x-x9) e x = x39) (= x341) o0 (x=xy)
(x;-x1) (5= x9) oo (x4-x5.7) (xi—xi+1) e (xgmxy)

It should be noted that the values x; of the given points must
all be different.

The following program in BASIC can be used.

120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300

DIM X(50), Y(50)

PRINT "NUMBER OF GIVEN POINTS = ";

INPUT N

IF N<2 OR N>50 THEN 20

PRINT

FOR I =1TO N

PRINT “X, Y FOR POINT No."; I

INPUT X(I), Y(I)

IF I =1 THEN 130

FOR J =1 TO I-1

IF X(1) = X(J) THEN PRINT "THIS VALUE OF X HAS ALREADY
BEEN USED " : GOTO 70

NEXT J

NEXT I

PRINT : PRINT "POINT X FOR INTERPOLATION =

INPUT Z
=0

FOR 1=1 To N

C=1

FOR J=1 TO N

IF J =1 THEN 220

C = Cx(Z-X(J))/(X(1)-X(J))

NEXT J

V=V +CxyY(I)

NEXT 1

PRINT : PRINT "INTERPOLATED VALUE = "; V

PRINT : PRINT "STOP (0) OR INTERPOLATION AGAIN (1) ";

INPUT A

IF A = 0 THEN STOP

IF A = 1 THEN 140

GOTO 260

The program first asks how many known values you are going to en-
ter from a table and allows you to input these one at a time. Then
it asks you repeatedly for intermediate values of interest, retur-
ning the interpolated value for each.
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A remarkable feature of Lagrange interpolation is that the values
entered initially do not have to be in order, or evenly spaced. Ac-
curacy is usually better with uniform spacing, however.

As an exercise, try the program on the following six given points

x = angle in degrees Yy = sine
29.43 0.491 3598528
30.97 0.514589 1926
27.69 0.464 687 5083
28.11 0.471 165 8342
31.58 0.523 688 5653
33.05 0.545370 7057

Asking for the sine of 30°; you should obtain 0.5 exactly. It is
remarkable that even for the remote values x = 0° and x = 90°, the
Lagrange interpolation formula performed with these six data points
yields the still rather good values +0.000 0482 and +1.00007, res-
pectively, the correct values being 0 and 1 exactly.

The expression (3.13) is a polynomial of degree n - 1, and it is
the unique polynomial of that degree which takes the values y;, y,,
- 5> Yy for x = xy, x5, ..., x,. But Lagrange's formula has the
disadvantage that in itself it gives no indication of the number of

points required to secure a desired degree of accuracy. However,
when we wish to express the interpolating polynomial explicitely as
a function of the variable x rather than making an actual interpo-
lation, the use of Lagrange's formula is advantageous.

Example 3.g — Construct the (unique) 3rd-order polynomial pas-
sing through the following values :
x : 1 3 4 6
y = -6 6 9 15

By substituting the given values of x and y into (3.13), we obtain

(x=3)(x=-4)(x-6)
(1-3)(1-4)(1-6)

(x -1 (x-4) (x~6)

gy = (-6) 3-1)(3-4)(3-6)

+ (6)

(x~-1)(x=-3)(x-6) (x=-1)(x=3)(x~-4)
OG- T o (6-3) (6-8)

which upon simplification reduces to

y = —é‘(x3 - 13x2 + 69x - 87)




Chapter 4

Curve Fitting

In many cases, the result of a large number of observations is a
series of points in a graph, each point being defined by an x-value
and an y-value. It may be necessary to draw through the points the
'best! fitting curve.

Several curves can be fitted through a series of points: a
straight line, an exponential, a polynomial, a logarithmic curve,
etc.

To avoid indivi- y
dual judgment, it is
necessary to agree
on a definition of a
'best fitting' curve. (Xy,Yn)
Consider Figure 1 in L4
which the N data
points are given by
(x1, 1), (X3, ¥y),

.» (Xy, Yy). The
values of X are sup-
posed to be rigo-
rously exact, while
the Y-values are
measured quantities,
hence subject to an T Y I X
error. Xl X2 XN

For a given value
of X, say Xy, there Figure 1
will be a difference
between the value ¥,
and the corresponding value as determined from the curve C. As indi-
cated in the figure, we denote this difference by Dy, which is some-
times referred to as a deviation, error or residual and may be posi-
tive, negative or zero. Similarly, corresponding to the values X,,
.++» Xy we obtain the deviations D,, ..., Dy.

35
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A measure of the 'goodness of fit' of the curve C to the given
data is provided by the quantity D;>+ D2+ ... + Dy?. If this is
small the fit is good; if it is large the fit is bad. We therefore
make the following definition: of all curves approximating a given
set of data points, the curve having the property that I p;2 is a
minimum, is called a best fitting curve. The % means ‘sum of'.

A curve having this property is said to fit the data in the least
square sense and is called a least square curve.

As has been said above, all values of the independent variable X
are supposed to be exact. Of course, it is possible to define an-
other least square curve by considering perpendicular distances from
each of the data points to the curve instead of vertical distances;
however, this is not used too often.

In this Chapter we will consider principally the case where the
best fitting curve is a straight line, a problem called linear re-
gression.

The name ‘regression' may seem strange, because in the calcula-
tion of the best curve nothing 'regresses'! Alt [1] writes:

"Die Benennung Regression wurde von Galton (1822-1911) ein-
gefithrt, der die Korperlidngen von Eltern und Kindern ver-
glich und dabei beobachtete, daB zwar im allgemeinen grofe
Viter groBe S6hne haben, daB diese Beziehung jedoch nicht
immer stimmt, da die KorpergroBe der Séhne im Mittel etwas
kleiner ist, als die der Viter, umgekehrt aber kleine El-
tern im Mittel etwas grdBere Kinder haben. Diesen 'Riick-
schlag' in Richtung auf die DurchschnittsgrdBe der Bevdl-
kerung bezeichnete er als Regression.,

A better term is curve fitting, and in the case of a straight
line it is a linear curve fitting.

Linear curve fitting (linear regression)
We wish to calculate the coefficients of the linear equation
y = ax + b (4.1)

using the least-squares method. The slope a and the y-intercept b
can be calculated by means of the formulae

NIxy - Xx2y
NIx?2 - (Zx)?

4.2
Ty %x?2 - Ix Ixy ( )

NZx?2 - (Zx)?

where N is the number of points. Note that both fractions have the
same denominator. The sign X indicates the summation. Thus, Ix is
the sum of all x-values, Iy the sum of all the y-values, Zx2? the
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sum of the squares of all the x-values, Ixy the sum of the products
xy of all the couples of values, etc. It should be noted that Ixy
is not the same as Zx X Iy (the sum of the products is not the same
as the product of the sums), and that (Ix)? is not the same as Ix?
(the square of the sum is not the same as the sum of the squares)!

An interesting astronomical application is to find the relation
between the intrinsic brightness of a comet and its distance to the
Sun. The apparent magnitude m of a comet can generally be represen-
ted by a formula of the form

m= g+ 5logA + K log r

Here, A and r are the distances in astronomical units of the
comet to the Earth and to the Sun, respectively. The logarithms are
to the base 10. The absolute magnitude g and the coefficient «
must be deduced from the observations. This can be performed when
the magnitude m has been measured during a sufficiently long period.
More precisely, the range of r should be sufficiently large. For
each value of m, the values of A and r must be deduced from an
ephemeris, or calculated from the orbital elements.

In this case, the unknowns are g and k. The formula above can
be written

m-51log A = K logr + g

which is of the form (4.1), when we write y = m - 5 log A, and

x = log r. The quantity y may be called the ‘'heliocentric' magni-
tude, because the effect of the variable distance to the Earth has
been removed.

Example 4.a — Table 4.A contains visual magnitude estimates m
of the periodic comet Wild 2 (1978b), made by John
Bortle. The corresponding values of r and A have
been calculated from the orbital elements [2].

The quantities x and y are used to calculate the sums Ix, 2y,
Zx?, and ZIxy. We find

N =19 ix
Ly

4.2805 Zx?
192.0400 Ixy

1.0031
43.7943

non

whence, by formula (4.2),
a = 13.67 b=7.03

Consequently, the 'best' straight line fitting the observations
is
y = 13.67x +7.03
or m-51log A = 13.67 logr + 7.03
Hence, for the periodic comet Wild 2 in 1978, we have

m=7.03+51og A + 13.67 log r
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TABLE 4.A

- X = y=
1978, UT m r A logr m-5 log A

Febr. 4.01 11.4 1.987 1.249 0.2982 10.92
5.00 11.5 1.981 1.252 0.2969 11.01
9.02 11.5 1.958 1.266 0.2918 10.99
10.02 11.3 1.952 1.270 0.2905 10.78

25.03 11.5 1.865 1.335 0.2707 10.87
March 7.07 11.5 1.809 1.382 0.2574 10.80
14.03 11.5 1.772 1.415 0.2485 10.75
30.05 11.0 1.693 1.487 0.2287 10.14
April 3.05 11.1 1.674 1.504 0.2238 10.21
10.06 10.9 1.643 1.532 0.2156 9.97
26.07 10.7 1.582 1.592 0.1992 9.69
May  1.08 10.6 1.566 1.610 0.1548 9.57
3.07 10.7 1.560 1.617 0.1931 9.66
8.07 10.7 1.545 1.634 0.1889 9.63
26.09 10.8 1.507 1.696 0.1781 9.65
28.09 10.6 1.504 1.703 0.1772 9.44
29.09 10.6 1.503 1.707 0.1770 9.44
June 2.10 10.5 1.498 1.721 0.1755 9.32
6.09 10.4 1.495 1.736 0.1746 9.20

Coefficient of Correlation

A correlation coefficient is a statistical measure of the degree
to which two variables are related to each other. In the case of a
linear equation, the coefficient of correlation is

NZixy - Ix Ly
r = L (4.3)
VNIx? - (2x)2  VHiy? - (Iy)?

This coefficient is always between +1 and -1. A value of +1 or
-1 would indicate that the two variables are totally correlated; it
would denote a perfect linear relationship, all the points represen-
ting paired values of x and y falling exactly on the straight line
representing this relationship. If r = +1, an increase of x corres-
ponds to an increase of y (Figure 2). If r = -1, there is again a
perfect linear relationship, but y decreases when x increases (see
Figure 3).

When r is zero, there is no relationship between x and y (Fi-
gure 4). In practice, however, when there is no relationship, one
may find that r is not exactly zero, due to fortuitous coincidences
that generally occur except for an infinite number of points.

When |r| is between 0 and 1, there is a trend between x and y,
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. Figure 2

' Perfect linear
0 X .
relationship;
® positive correlation

Figure 3

'y Perfect linear
. relationship;
. negative correlation

Figure 4

No correlation

i - Figure 5

. . Some correlation
- »

although there is no strict relationship (Figure 5). Here, again, it
should be noted that, if there is actually a strict relationship
between the two variables, the calculation may give a value of r not

exactly equal to +1 or to -1, by reason of inaccuracies inherent to
all measures.

It should be noted that r is a dimensionless quantity; that is,
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it does not depend on the units employed.

The sign of r only tells us whether y is increasing or decrea-
sing when x increases. The important fact is not the sign, but the
magnitude of r because it is this magnitude which indicates how well
the linear approximation is.

It must be emphasized that the computed value of r in any case
measures the degree of relationship relative to the assumed type of
function, namely the linear equation. Thus, if the value of r ap-
pears to be nearly zero, it means
that there is almost no linear
correlation between the variables. y
However, it does not necessarily
mean that there is no correlation
at all, since there may actually
be a high non-linear correlation
between the variables. As an ex-
ample, consider the seven points

x [ -4 -3 -2 -1 0 +1 +2 —+ —
-6 -1 42 +3 +2 -1 -6

Y
®

y

Formula (4.3) yields r = zero,
although the points lie exactly
on the parabola y = 2 - 2x - x?
(Figure 6).

It should also be pointed out
that a high correlation coeffi-
cient (that is, near +1 or -1)
does not necessarily indicate a
direct, physical dependence of
the variables. Thus, if we con-
sider a sufficiently large number
of administrative territories, one can find a high correlation bet-
ween the number of beds in the psychiatric hospitals and the number
of television receivers of each territory. A high mathematical cor-
relation, indeed, but a physical nonsense.

Figure 6

Example 4.b — Table 4.B gives, for each of the twenty-two sun-
spot maxima which have occurred from 1761 to 1989,

the time interval x, in months, since the previous sunspot minimum,

and the height y of the maximum (highest smoothed monthly mean).

We find

ix
Iy

1120 Tx2
2578.9 Ty?

60608 Zxy = 122337.1
340 225.91 N = 22

#
1]

and then, by formulae (4.2) and (4.1),
y = 244.18 - 2.49% (4.4)
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y e Figure 7
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20 40 60 80
TABLE 4.B
Epocp of X y Epocﬁ of x y
maximum maximum
1761 June 73 90.4 1884 Jan. 61 78.1
1769 Oct. 38 125.3 1893 Aug. 42 89.5
1778 May 35 161.8 1905 Oct. 49 63.9
1787 Nov. 42 143.4 1917 Aug. 50 112.1
1804 Dec. 78 52.5 1928 June 62 82.0
1816 March 68 50.8 1937 May 44 119.8
1829 June 74 71.5 1947 July 39 161.2
1837 Febr. 42 152.8 1957 Nov. 43 208.4
1847 Nov. 52 131.3 1969 Febr. 54 111.6
1860 July 54 98.5 1979 Nov. YA 167.1
1870 July 39 144.8 1989 Oct. 37 162.1
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Equation (4.4) represents the best straight line fitting the gi-
ven 22 points. These points and the line are shown in Figure 7.

From formula (4.3) we find r = -0.767. This shows that there
exists an evident trend to connection, and the negative sign of r
indicates that the correlation between x and y is negative: the
longer the duration of the rise from a minimum to the next maximum
of the sunspot activity, the lower this maximum generally is.

It should be noted that here, as in all statistical studies, the
sample must be sufficiently large in order to give a meaningful re-
sult. A correlation coefficient close to +1 or to -1 has no physi-
cal meaning if it is based on too small a number of cases. With too
few cases the correlation coefficient can accidentally be quite
large.

TABLE 4.C

year x y year X y year X y
1901 2.7 700 1931 21.2 858 1961 53.9 903
1902 5.0 762 1932 11.1 858 1962 37.5 862
1903 24 .4 854 1933 5.7 738 1963 27.9 713
1904 42.0 663 1934 8.7 707 1964 10.2 785
1905 63.5 912 1935 36.1 916 1965 15.1 1073
1906 53.8 821 1936 79.7 763 1966 47.0 1054
1907 62.0 622 1937 114.4 900 1967 93.8 707
1908 48.5 678 1938 109.6 711 1968 105.9 776
1909 43.9 842 1939 88.8 928 1969 105.5 776
1910 18.6 990 1940 67.8 837 1970 104.5 727
1911 5.7 741 1941 47.5 744 1971 66.6 691
1912 3.6 941 1942 30.6 841 1972 68.9 710
1913 1.4 801 1943 16.3 738 1973 38.0 690
1914 9.6 877 1944 9.6 766 1974 34.5 1039
1915 47.4 910 1945 33.2 745 1975 15.5 734
1916 57.1 1054 1946 92.6 861 1976 12.6 541
1917 103.9 851 1947 151.6 640 1977 27.5 855
1918 80.6 848 1948 136.3 792 1978 92.5 767
1919 63.6 980 1949 134.7 521 1979 155.4 839
1920 37.6 760 1950 83.9 951 1980 154.6 913
1921 26.1 417 1951 69.4 878 1981 140.5 1016
1922 14.2 938 1952 31.5 926 1982 115.9 800
1923 5.8 917 1953 13.9 557 1983 66.6 689
1924 16.7 849 1954 4.4 741 1984 45.9 931
1925 44,3 1075 1955 38.0 616 1985 17.9 758
1926 63.9 896 1956 141.7 795 1986 13.4 946
1927 69.0 837 1957 190.2 801 1987 29.2 908
1928 77.8 882 1958 184.8 834 1988 100.2 1005
1929 64.9 688 1959 159.0 560 1989 157.6 639
1930 35.7 953 1960 112.3 962 1990 142.6 759
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As an exercise, show that there is no correlation between the
rainfall at the Uccle Observatory, Belgium, and the sunspot acti-
vity, using the data of Table 4.C, where
x = yearly mean of the definitive Zilirich sunspot numbers,
y = total annual rainfall at Uccle, in millimeters.
Answer : The correlation coefficient is r = -0.064, which shows
that there is no significant correlation between x and y.
If we drop the last two points, the correlation (for the years
1901 to 1988) even drops to -0.027.
Quadratic curve fitting
Suppose that we wish to draw, through a set of N given points
(x, y), the best quadratic function
y = ax? + bx+ ¢
This is a parabola with vertical axis.
Let
P = Ix
Q = ZIx?
R = Ix3
s = Ixh
T = Ly
U = ZIxy
Vv = Ix?%y
D = NQS + 2PQR - Q% - P25 - NR? (4.5)
Then we have
a NQV + PRT + PQU - Q27 - p2y - NRU \
D
U + POV + QRT —~ 0%y - -
p = -HS PQV + OR = 02U - PST - NRV g (4.6)
c OST + QRU + PRV ~ Q?vV - PSU - R?*T
b /
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General curve fitting (multiple linear regression)
The principle of the best fitting straight line can be extended to
other functions and with more than two unknown linear coefficients.

Let us consider the case of a linear combination of three func-
tions. Suppose that we know that

y = af, (x) + bfl(x) + cfz(x)

where fg,, £y and £, are three known functions of x, but that the
coefficients a, b and ¢ are not known. Suppose, moreover, that the
value of y is known for at least three values of x. Then the coef-
ficients a, b, ¢ can be found as follows.

Calculate the sums

M = Lfy? U = Zyf,
P = Ifgf, v Tyf,
Q = Ifgf, W = Iyf,
R = If?
S = ¥f)f,
T = ILfy2
Then

D = MRT + 2PQS - MS? - RQ? - TP? )
R U(RT ~ 52) + v(0s - PT) + W(PS =~ QR)

D

2 (4.7)

b = U(sQ - PT) + v(MT - 0%) + w(PQ - MS)

D
o = U(Ps - RQ) + v(ro - MS) + w(MR - P2)

’ )

Example 4.c — We know that y is of the form

y = a sinx + bsin 2x + ¢ sin 3x

and that y takes the following values :
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x (degrees) y
3 0.0433
20 0.2532
34 0.3386
50 0.3560 +2
75 0.4983
88 0.7577
111 1.4585 +1
129 1.8628
143 1.8264 . .
160 1.2431 0 - 270 360
183 ~0.2043 0° 90°
200 ~1.2431
218 -1.8422
230 -1.8726 -1
248 -1.4889
269 -0.8372
290 -0.4377 -2
303 -0.3640
320 -0.3508
344 -0.2126

Find the values of the coefficients a, b, c.
We leave it as an exercise to the reader. The function is
y = 1.2 sinx - 0.77 sin 2x + 0.39 sin 3x
and is illustrated in the Figure above.

The reader will not find 1.2, -0.77 and +0.39 exactly, because
in the table the values of y are given with only four decimals.

Let us consider the special case y = ax? + bx + ¢c. Here we have

fo = x2
£y =
£,=1

resulting in T = N (the number of given points) and Q = R. The for-
mulae (4.7) then reduce to (4.5) and (4.6), with other notations.

As another special case, consider y = af(x) with only one un-
known coefficient. The latter is easily found from

Zy.f
2f2 (4-8)

a =
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Example 4.d — y = ay/x (x 3 0)

Find a for the best fitting curve through the
following points :

X : 0 1 2 3 4 5
y : 0 1.2 1.4 1.7 2.1 2.2

Here, f(x) = /x, so ZIf? is simply the sum of the x-values.

Formula (4.8) gives

15.2437
15

so the required function is

y = 1,016 /x
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Chapter 5

Iteration

Iteration (from the Latin iterare = to repeat) is a method consis-
ting of repeating a calculation several times, until the value of an
unknown quantity is obtained. Generally, after each repetition of
the calculation, one cbtains a result that is closer to the exact
solution. We have already seen the use of iteration in Chapter 3,
for solving equations (3.6), (3.7), (3.9), (3.10) and (3.11).

Iteration is used, for instance, when there is no method for cal-
culating the unknown quantity directly in an easy way. Examples are:

— the equation of the fifth degree x> + 17x - 8 = 0;

— the calculation of the times of beginning and end of a solar
eclipse, or of an occultation of a star by the Moon, for a
given place at the Earth's surface;

— the equation of Kepler E = M + e sin E (see Chapter 29),
where E is the unknown quantity.

To perform an iteration, one must start with an approximate value
for the unknown quantity, and use must be made of a formula, or of a
set of formulae, in order to obtain a better value for the unknown.
This process is then repeated (iteration) until the required accu-
racy is reached.

A classical example is the calculation of the square root of a
number. 0f course, this method has nowadays lost its interest (ex-
cept in special cases), because all pocket calcuvlators and all pro-
gram languages already possess the function = or SQR. The calcula-
tion proceeds as follows.

Let N be the number whose square root is requested. Start with
an approximate value n for this root; if none is known, the value 1
can be used. Divide N by n, and take the arithmetic mean of the
quotient and n. The result is a better value for the square root.
In other words, a better value is given by (n + N/n)/2. Then the
calculation must be repeated.

47
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Example 5.a — Calculate ¢/ 159 to eight decimals.

We know that 12 x 12 = 144, so that 12 is an approximate value of
the square root of 159. We divide 159 by 12, and find the quotient
13.2500. The arithmetic mean of 12 and 13.2500 is 12.6250, which is
a better value for the required square root.

We now divide 159 by 12.6250; the quotient is 12.59406. The mean
of 12.6250 (the previous result) and 12.59406 is 12.60953, which is
a still better value for the square root.

In that way, we find successively

12 = starting value
12.625 000 00
12.609 52971
12.609 520 22
12.609 520 22

As you see, 12.60952022 yields 12.60952022 again, so this is
the required square root of 159.

Example 5.b — Calculate the (only) real root of the equation
x5+ 17x -8=0 (5.1)

Because there is no method or formula for the direct calculation
of the roots of an equation of the fifth degree, we will have re-
course to the iteration procedure. In equation (5.1) we put x5 in
the second member and solve for x; this gives

8 - x5

X = 7 (5.2)

The unknown quantity is now present in the right-hand member too,
but that does not matter, as we shall see. We start by letting x =0
in the right-hand member. Formula (5.2) then yields

x = 8/17 = 0.470588 235,

This is already a better value than x = 0. We now put the value
x = 0.470588 235 in the right-hand member, and now the formula gives
x = 0.469 230684, After four more iterations, we obtain the defini-
tive value, namely x = 0.469 249878.

(]

The iteration process is not always without problems, however, as
is shown in the following example.
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Example 5.c — Consider the equation x5 + 3x -8 = 0.

As in the preceding example, we put x° in the right-hand member,
and we obtain

8 - x°

3

x =

If we start, here again, with x = 0, we obtain successively

0.0000 (starting value)
2.6667
-42.2826
45049 099
~-6.18 x 10%7
etc...

and so the method does not work in this case! The successive results
diverge; in absolute value they grow bigger and bigger. They go 'in
the wrong direction'.

Why did the method work in Example 5.b, but not in Example 5.c 7
When x lies between 0 and 1, then x° too is between 0 and 1. More-
over, x° is then smaller than x. That is the reason why in Example
5.b the results of the successive iterations converge to a well-
defined value, the root of the equation. This root lies between 0
and 1.

But, as we shall see, the root of the equation in Example 5.c is
larger than 1. When x>1, then x%> > x > 1 (for x=2, we have al-
ready x5 = 32), and a small increase of x gives rise to a larger
increase of x°.

Consequently, the iteration procedure, performed in the same way
as in Example 5.b, cannot converge to the required result : the suc-
cessive values diverge. However, it 1s possible to get the ansver,
on the condition that we write the iteration formula in another form.

Example 5.d — Let us again consider the equation x°+ 3x - 8 = 0,

but now we take into account the fact that the root
is larger than 1, and hence that %7 > x. TFor this reason, we do not
put x> in the right-hand member here. Instead, we keep x5 in the
first member, so that the equation becomes

x> =8 - 3x or x = a 8 - 3x

Starting again with x = 0, we obtain the required root after 14
iterations, namely x = 1.321785627.
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In Example 5.b, we searched for the root of the equation
x% 4+ 17x - 8 = 0.

However, we can write this equation as

8
b4+17) =8 = —
x (x ) R whence x iy 17
We now can use this latter formula instead of (5.2). As an exer-
cise, solve this equation by iteration; you should obtain the same
result as in Example 5.b.

If we wish to work similarly for the equation of Example 5.c, we
obtain the iteration formula

8
x4+ 3

If we again start by putting the value x =0 in the right-hand
member, we obtain x = 8/3 = 2.666.... But then comes the surprise:
after a few iterations, the successive results jump unceasingly from
2.666223459 to 0.149436927, and back. As you see, the iteration
method does not succeed in all cases; much depends on the form of
the iteration formula.

As another example, consider the equation sin ¢ = 3 cos ¢. Put-
ting ¢ = 0° in the right member yields sin ¢ = 3, an impossibility.
Putting, instead, ¢ = 90° in the second member gives sin ¢ =0,
whence ¢ = 0°, which brings us back to the first case.

But if we write the equation as cos ¢ = (sin ¢)/3 then, star-
ting with ¢ =0°, we reach the solution ¢ = 71°.565051 after a few
iterations.

Or consider the equation sin ¢ = cos 2¢. The solution is ¢ =
30°, since sin 30° = cos 60°. If we start by putting ¢ = 29° in
the second member of that equation, the results of the successive
iterations diverge. 1f, however, we write the equation the other
way, namely cos 2¢ = sin ¢, then the successive results converge !

As a further illustra-
tion of the iteration pro-
cedure, let us consider
Newton's method for sear-
ching the solution of an
equation with one unknown

y by successive approxima-
n .
tions.

Let f(x) be a func-
tion of x, and we want to
find for what value of x
that function is zero.
Let f'(x) be the deriva-

tive function of f(x).
X //}n Xn41 If x, is an assumed value
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for the root X, then calculate the value y, of the function f(x),
and the value y, of the derivative f'(x), for that value of x. The
value y; is the slope of the tangent to the curve at the point

Xn»s> Yp — see the Figure on the preceding page. Then, a better value
for the unknown quantity is given by

- —_ n
Xn+1 T ¥p T

The calculation is then repeated using this new value of x, until
the final value X 1is reached.

In this procedure, the choice of a good starting value for x can
be a problem. For example, for the equation x°% - 3x — 8 =0, the
derivative function is 5x* - 3 and, if we start with x =0, we ob-
tain oscillating results:

0.000 000 000
-2.666 666 667
-2.126929 222
-1.672392941
-1.227532073
-0.376 965 299
-2.749036 974
~-2.194 266 642
-1.731201846
-1.293218530
-0.588 844 800
-3.216865068
-2.572967 057
-2.049930 313
-1.603 831 482
-1.145086 797

The reason is that the function reaches a maximum for x = -0.88,
so that the tangents on both sides of that point have slopes in op-
posite directions.

But if we start with x =1, then the correct value (to 9 decimal
places) is reached after 11 iterations :

+1.000 000 000
+6.000 000 000
+4.803 458 391
+3.850 111 311
+3.095 824 107
+2.510476 381
+2.080081 724
+1.807 461730
+1.690 945 284
+1.671102 262
+1.670579 511
+1.670 579 156
+1.670 579 156
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Test on "smaller than"

When an iteration procedure is used, one should — as has been
mentioned above — repeat the calculation until the result no longer
varies. In other words, as long as the last result differs from
the previous one, a new iteration must be performed. But here we are
faced with a small problem, due to the fact that the computer does
not calculate 'exactly'.

Consider the following equation of the third degree
s343s ~Ww=0

which occurs in the calculation of the motion in a parabolic orbit
(see Chapter 33). W is a given constant, while s is the unknown
quantity. This equation can very easily be solved by iteration.
Start from any value; a good choice is s = 0. Then a better value
for s is

2s% +w
3(s2+1)

After some iterations the correct value of s is obtained. Take,
for instance, the case W = 0.9. The calculation performed on the
HP-85 microcomputer gives the following successive results :

.000 000 000 000
.300 000 000 0G0
.291743119 266
.291724 443 641
.291 724 443 546
.291 724 443 548
.291724 443 548

[Nl ool

and hence the exact value (with twelve significant digits) is
0.291 724 443 548. But if we repeat the calculation, on the same ma-
chine, for w= 1.5, we have a surprise : the machine does not stop
and finds successively :

0.000 000 000 000
0.500 000 000 000
0.466 666 666 667
0.466 220 600 162
0.466 220523 909
0.466 220 523 911
0.466 220523 910
0.466 220 523908
0.466 220523911
0.466 220523910
0.466 220 523 908

and forever again ...911, ...910, ...908. However, we tried this cal-
culation (for W = 1.5) on two other machines, and the iteration pro-
cedure did converge; but then it did not converge for other values

of w.
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A remedy for this trouble consists of testing on 'smaller than'
instead of on 'equal to'. In other words, let the iteration process
stop when the difference between the new value of s and the pre-
vious one is, in absolute value, less than a given quantity, for
instance 10710,

The binary search

There is a procedure which is absolutely foolproof, because it
can neither stall nor diverge, and always converges in a fixed amount
of time to the most exact value of the root the machine is capable.
The method does not try to find successively better values of the
root. Instead, it just uses a binary search to locate the correct
value of the root.

Let us explain the procedure by reconsidering the equation of
Example 5.b, namely x>+ 17x - 8 = 0.

For x =0 and x = 1, the first member of this equation takes the
values -8 and +10, respectively. So we know that the root lies bet-
ween 0 and 1 (*).

Let us now try x = 0.5, which is the arithmetical mean of 0 and 1.
For x = 0.5, the function takes the value +0.53125, which has the
opposite sign of the function's value for x = 0. So we now know that
the root is between 0 and 0.5.

We now try x = 0.25, which is the arithmetical mean of 0 and 0.5.
And so on.

After each step, the interval in which the root necessarily must
be is halved. After 32 steps the value of the root is known with
nine exact decimals. (In Example 5.b, the same accuracy was obtained
after only 6 steps. But, as we already pointed out, the binary search
is a method which is absolutely safe, and it can be used when the
'ordinary' iteration procedure is likely to fail).

With the binary search, one knows in advance the accuracy after
n steps: it is the initial interval divided by 2".

For the example given above, the program in BASIC can be written
as follows (see next page). Line 60 is not actually needed; it has
been included to show the successively better values of x.

(*) This is true only if the function is continuous in the interval
considered. From the fact that tan 86° > 0 and tan 93° < 0, we
may not conclude that tan x becomes zero for a value of x bet-
ween 86° and 93°.
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10
20
30
40
50
60
70
80
90
100
110
120
130
140

ASTRONOMICAL ALGORITHMS

DEF FNA(X) = X*(X“4+17) - 8
X1=0 : Y1=FNA(X1)
X2=1 : Y2=FNA(X2)

FOR J=1 TO 33
X=(X1+X2)/2

PRINT J, X

Y = FNA(X)

IF Y=0 THEN PRINT J,X : END
IF Y*Y1>0 THEN 120

X2=X : y2=v

GOTO 130

X1=X : YL=Y

NEXT J

END



Chapter 6

Sorting Numbers

Computers are more than calculating machines. They can store and
handle data. One example of handling is to rearrange or sort data.
Sorting is a function with almost universal application for all
users of computers. In astronomy, examples are: sorting stars by
right ascension, or by declination; sorting times chronologically;
sorting minor planets by increasing semimajor axis, or sorting their
names alphabetically. Different algorithms are available to perform
sorting. In this Chapter we shall give three methods, provide the
BASIC programs, and compare the calculation times.

One of the simplest sorting algorithms is given in Table 6.A
under the name 'SIMPLE SORT'. We start from N numbers Xx(1),
x(2), ..., X(N). The values of these elements are arbitrary, and
the same value may occur more than once.

After the execution of the routine the numbers x(I) are sorted
in increasing order. If one wants them in decreasing order, one
should, on line 120, replace >= by <=; or, alternatively, one may
replace x(I) by -x(I).

At each step, two elements are permuted. Successively, the smal-
lest element is placed in front (for I =1), then the second, and so
on, to N - 1. Note that on line 100 the index I should go till
N - 1, not till w.

This method is also called 'straight insertion'. The time needed
to sort N numbers depends, of course, on the type of computer
and on the program language, but in any case the sorting time will
approximately be proportional to N2. This means that the method is
unsuitable for large N.

The method called 'BETTER' is somewhat faster, but again the sor-
ting time is approxXimately proportional to N2. Its principle is
simple: find the smallest element, and place it in front by permu-
ting two elements.

When the set of data to be sorted is large, a much better method

55



56 ASTRONOMICAL ALGORITHMS

TABLE 6.A : Three sorting programs in BASIC

SIMPLE SORT QUICKSORT
100 FOR I =1 TO N-1 100 DIM L(30), R(30)
110 FOR J = I+1 TO N 116 S=1: L(1)=1 : R(1)=
120 IF X(J)>=X(I) THEN 160 120 L=1L(S) : R=R(S)
130 A = X(I) 130 S=S-1
140 X(I) = X(J) 140 I=L: J=R
150 X(J) = A 150 V= X(INT((L+R)/2))
160 NEXT J 160 IF X(I)>=V THEN 190
170 NEXT I 170 1 =1+

180 GOTO 160
190 IF V>=X(J) THEN 220

200 J=4J-1
BETTER 210 GOTO 190
220 IF 1>J THEN 250
100 FOR I =1 T0 N-1 230 W=X(I) : X(I)=X(J) :
110 M= x(I) X(3) =W
120 K =1 240 I1=1I+1:J=J-1
130 FOR J=1+1 TO N 250 IF I<=J THEN 160
140 IF X(J)<M THEN M=X(J) : K=J 260 IF J-L < R-1 THEN 320
150 NEXT d 276 IF L>=J THEN 300
160 A=X(I) : X(I)=M : X(K)=A 280 S = S+1
170 NEXT I 290 L(S) =1L : R(S) =14
300 L=1

310 GOTO 360

320 IF I>=R THEN 350
330 S=S+1

340 L(S)=1 : R(S) =

350 R=1J

360 IF L <R THEN 140

370 IF S<>0 THEN 120

is 'QUICKSORT', which was invented by C. A. R. Hoare. The program it-
self is longer, but the computer time is considerably shorter. More-
over, when N is sufficiently large, the computing time is approxi-

mately proportional to N, not to N2. (In fact, it is nearly propor-
tional to N log N).

The QUICKSORT sorting technique needs two small auxiliary one-
dimensional arrays: L(M) and R(M). M is at least the smallest in-
teger larger than log, N. A value of M=30 is certainly sufficient
for all practical purposes.

In Table 6.B we mention the calculation times for some values
of N on the HP-85 microcomputer for the three programs mentioned
in Table 6.A. As we already said, the times will be different on
other computers, but in any case we find that these times increase
rapidly for larger values of N, except for the QUICKSORT algorithm.
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TABLE 6.B

Calculation times (in seconds) of the three
sorting algorithms on the HP-85 microcomputer

N SIMPLE SORT BETTER QUICKSORT
10 0.73 0.51 0.70
20 3.92 2.11 1.84
40 15.4 7.81 4.43
60 38.0 17.0 8.63
80 63.8 29.1 11.3
100 104.3 44.6 14.6
150 254 98.6 24.1
200 453 174 32.9
300 1002 387 56.7
500 97.7
1000 218
1500 342
2000 472

To gain some idea of the calculation speeds for larger values of
N, we did appeal to a faster computer; the programs were written in
FORTRAN and were compiled. The results are given in Table 6.C. The
superiority of QUICKSORT is conspicuous here. For N = 300, the cal-
culation time with QUICKSORT is still 15% of that with BETTER (Ta-
ble 6.B); but for 15000 numbers it is only one third of 1 per cent!

TABLE 6.C

Calculation times (in seconds) of the three
sorting algorithms on a 'big' computer

N SIMPLE SORT BETTER QUICKSORT
1000 13 10 <1
2 000 51 40 1
3000 114 90 1
4 000 206 159 2
5000 321 249 2
10000 1272 994 5
15000 2236 7
20000 10
25 000 12

30000 15
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In some cases there is even no need to write a program. For in-
stance, the TRS-80 Model I contains a built-in function which sorts
1000 numbers in 9 seconds, and 8000 numbers in 83 seconds. It ap-
pears that the sorting time is approximately proportional to N here,
not to N2, so probably the QUICKSORT method is used.

To conclude, we can recommend the 'straight insertion' (SIMPLE
SORT) if the set of data to be sorted is not too large, for example
for N<200. For larger sets it is well worth while to use QUICKSORT.

Besides numerical data, often strings (names) are to be sorted,
such as X$(1) ="Ceres", X$(2)="Pallas'", etc. Each character has
its own value. The complete list with all signs constitutes the so-
called ASCII table, a part of which is given in Table 6.D. [ASCII =
'American Standard Code for Information Interchange. ]

TABLE 6.D : Visible ASCII Characters
After each character its decimal code is given
space 32 8 56 p 80 h 104
! 33 9 57 Q 81 i 105
o 34 : 58 R 82 3 106
# 35 ; 59 S 83 k 107
$ 36 < 60 T 84 1 108
% 37 = 61 U 85 m 109
& 38 > 62 v 86 n 110
! 39 ? 63 W 87 0 111
( 40 @ 64 X 88 p 112
) 41 A 65 Y 89 qQ 113
* 42 B 66 z 90 r 114
+ 43 C 67 [ 91 s 115
, 44 D 68 \ 92 t 116
- 45 E 69 ] 93 u 117
. 46 F 70 - 94 v 118
/ 47 G 71 _ 95 W 119
0 48 H 72 ~ 96 X 120
1 49 I 73 a 97 y 121
2 50 J 74 b 98 z 122
3 51 K 75 c 99 { 123
4 52 L 76 d 100 | 124
5 53 M 77 e 101 } 125
6 54 N 78 f 102 n 126
7 55 0 79 g 103




Chapter 7

Julian Day

In this Chapter we give a method for converting a date, given in the
Julian or in the Gregorian calendar, into the corresponding Julian
Day number (JD), or vice versa.

General remarks

The Julian Day number or, more simply, the Julian Day (*) (JD)
is a continuous count of days and fractions thereof from the begin-
ning of the year -4712, By tradition, the Julian Day begins at
Greenwich mean noon, that is, at 12P Universal Time. If the JD cor-
responds to an instant measured in the scale of Dynamical Time (or
Ephemeris Time), the expression Julian Ephemeris Day (JDE) (*%) is
generally used. For example,

JD  24431259.9
JDE 2443 259.9

1977 April 26.4 UT
1977 April 26.4 TD

It

In the methods described below, the Gregorian calendar reform is
taken into account; thus, the day following 1582 October 4 (Julian
calendar) is 1582 October 15 (Gregorian calendar).

The Gregorian calendar was not at once officially adopted by all
countries. This should be kept in mind when making historical re-
search. In Great Britain, for instance, the change was made as late
as in A.D. 1752, and in Turkey not before 1927.

(*) In many books we read 'Julian Date' instead of 'Julian Day'.
For us, a Julian date is a date in the Julian calendar, just
as a Gregorian date refers to the Gregorian calendar. The JD
has nothing to do with the Julian calendar.

(**) Not JED as it is sometimes written. The 'E' is a sort of index
appended to 'JD'.
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The Julian calendar was established in the Roman Empire by Julius
Caesar in the year -45 and reached its final form about the year +8.
Nevertheless, we shall follow the astronomers' practice consisting
of extrapolating the Julian calendar indefinitely to the past. In
this system, we can speak, for instance, of the solar eclipse of
August 28 of the year -1203, although at that remote time the Roman
Empire was not yet founded and the month of August was still to be
conceived !

There is a disagreement between astronomers and historians about
how to count the years preceding the year 1. In this book, the
'B.C.' years are counted astronomically. Thus, the year before the
year +1 is the year zero, and the year preceding the latter is the
year -1. The year which the historians call 585 B.C. is actually
the year -584.

The astronomical counting of the negative years is the only one
suitable for arithmetical purpose. For example, in the historical
practice of counting, the rule of divisibility by 4 revealing the
Julian leap-years no longer exists; these years are, indeed, 1, 5,
9, 13, ... B.C. In the astronomical sequence, however, these leap-
years are called 0, -4, -8, -12 ..., and the rule of divisibility
by 4 subsists.

We will indicate by INT(x) the integer part of the number x,
that is the integer which precedes its decimal point. Examples :

INT (7/4) = 1 INT (5.02) =5
INT (8/4) = 2 INT (5.9999) = 5

There may be a problem with negative numbers. On some computers
or in some program languages, INT(x) is the greatest integer less
than or equal to x. In that case we have, for instance, INT(-7.83)
= -8, because -7 is indeed larger than -7.83.

But in other languages, INT is the integer part of the written
number, that is, the part of the number that precedes the decimal
point. In that case, INT(-7.83) = -7. This is called truncation,
and some program languages have both functions: INT(x) having the
first of the above-mentioned meanings, and TRUNC(x).

Hence, take care when using the INT function for negative numbers.
(For positive numbers, both meanings yield the same result). In the
formulae given in this book, the argument of the INT function is al-
ways positive.

Calculation of the JD

The following method is valid for positive as well as for nega-
tive years, but not for negative JD.

Let Y be the year, M the month number (1 for January, 2 for Fe-
bruary, etc., to 12 for December), and D the day of the month (with
decimals, if any) of the given calendar date.
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e If M>2, leave Y and M unchanged.

If Mm=1 or 2, replace v by Y-1, and M by M+ 12.

In other words, if the date is in January or February, it is con-
sidered to be in the 13th or 14th month of the preceding year.
e In the Gregorian calendar, calculate
X
100
In the Julian calendar, take B = 0.

a = INT ( B=2—A+INT(%)

e The required Julian Day is then

JD = INT (365.25(y + 4716)) + INT (30.6001 (M+1))

7.1
+ D + B - 1524.5 ( )

The number 30.6 (instead of 30.6001) will give the correct result
but 30.6001 is used so that the proper integer will always be obtai-
ned. [In fact, instead of 30.6001, one may use 30.60l, or even
30.61.] For instance, 5 times 30.6 gives 153 exactly. However, most
computers would not represent 30.6 exactly — see in Chapter 2 what
we said about BCD — and might give a result of 152.9929998 instead,
whose integer part is 152. The calculated JD would then be incorrect.

Example 7.2 — Calculate the JD corresponding to 1957 Qctober 4.81,
the time of launch of Sputnik 1.
Here we have Y = 1957, M =10, D= 4.81.
Because M > 2, we leave Y and M unchanged.
The date is in the Gregorian calendar, so we calculate

_ 1957 , _ _
A= INT(——IOO = INT(19.57) = 19
19
B=2—19+INT(T) = 2-19+4 = -13
JD = INT(365.25x6673) + INT(30.6001 x 11) + 4.81 - 13 - 1524.5
JD = 2436116.31
Example 7.b — Calculate the JD corresponding to January 27 at 12h

of the year 333.
Because M =1, we have y =333 ~1 = 332 and M=1+12 =13,

Because the date is in the Julian calendar, we have B = 0.

Jb
Jb

INT (365.25 x 5048) + INT(30.6001 x 14) + 27.5 + 0 - 1524.5
1842713.0
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The following list gives the JD corresponding to some calendar
dates. These data may be useful for testing a program.

2000 Jan. 1.5 2451545.0
1987 Jan, 27.0 2446822.5
1987 June 19.5 2446 966.0
1988 Jan. 27.0 2447 187.5
1988 June 19.5 2447 332.0
1900 Jan. 1.0 2415020.5
1600 Jan. 1.0 2305447.5
1600 Dec. 31.0 2305812.5
837 Apr. 10.3 2026871.8
-1000 July 12.5 1356 001.0
-1000 Feb. 29.0 1355 866.5
-1001 Aug. 17.9 1355671.4
-4712 Jan. 1.5 0.0

If one is interested only in dates between 1900 March 1 and 2100
February 28, then in formula (7.1) we have B = -13.

In some applications it is needed to know the Julian Day JD, cor-
responding to January 0.0 of a given year. This is the same as De-
cember 31.0 of the preceding year. For a year in the Gregorian ca-
lendar, this can be calculated as follows.

v = year - 1 A=INT(1—(1;0~)

JD, = INT(365.25¥) - 4 + INT(%) + 1721424.5

For the years 1901 to 2099 inclusively, this reduces to

JD, = 1721409.5 + INT (365.25 x (year - 1))

When is a given year a leap year?

In the Julian calendar, a year is a leap (or bissextile) year
of 366 days if its numerical designation is divisible by 4.
All other years are common years (365 days).

For instance, the years 900 and 1236 were bissextile years,
while 750 and 1429 were common years.

The same rule holds in the Gregorian calendar, with the fol-
lowing exception: the centurial years that are not divisible
by 400, such as 1700, 1800, 1900, and 2100, are common years.
The other century years, which are divisible by 400, are leap
years, for instance 1600, 2000, and 2400.
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The Modified Julian Day (MJD) sometimes appears in modern work,
for instance when mentioning orbital elements of artificial satel-
lites. Contrary to the JD, the Modified Julian Day begins at
Greenwich mean midnight. It is equal to

MJD = JD - 2400000.5
and therefore MJD = 0.0 corresponds to 1858 November 17 at Ob UT.

Calculation of the Calendar Date from the JD

The following method is valid for positive as well as for nega-
tive years, but not for negative Julian Day numbers.

Add 0.5 to the JD, and let 2 be the integer part, and F the frac-
tional (decimal) part of the result.

If 2 < 2299161, take A = Z.
If 2z is equal to or larger than 2299161, calculate

7 - 1867216.25)

a = INT (S—5g5i75s

A =Z+1+a—INT(-%)

Then calculate
B = A+ 1524

B - 122.1)
365.25

D = 1INT(365.25cC)

¢ = INT(

B o= INT(5Po0r)

The day of the month (with decimals) is then
B ~ D - INT(30.6001E) + F
The month number m is B -1 if E< 14
E - 13 if E = 14 or 15
The year is . _ 4716 if m>2
C — 4715 if m=1or 2

Contrary to what has been said earlier about formula (7.1), in
the formula for E the number 30.6001 may not be replaced by 30.6,
even if the computer calculates exactly. Otherwise, one would obtain
February 0 instead of January 31, or April 0 instead of March 31.
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Example 7.c — Calculate the calendar date corresponding to
JD 2436116.31.

2436116.31 + 0.5 = 2436116.81
7z = 2436116 and F = 0.81
Because Z > 2299161, we have

2436116 - 1867 216.25 )
36524.25

a = INT ( =15

15
)

A = 2436116 + 1 + 15 - INT( = 2436129
Then we find
B = 2437 653 c = 6673 D = 2437 313 E =11
day of month = 4.81
month m = E-1 = 10 (because E < 14)
year = C - 4716 = 1957 (because m> 2)

Hence, the required date is 1957 October 4.81.

Exercise : Calculate the calendar dates corresponding to
JD = 1842713.0 and JD = 1507 900.13.

Answers : 333 January 27.5 and -584 May 28.63.

Time interval in days

The number of days between two calendar dates can be found by
calculating the difference between their corresponding Julian Days.

Example 7.d — The periodic comet Halley passed through perihelio
on 1910 April 20 and on 1986 February 9. What is
the time interval between these two passages ?

1910 April 20.0 corresponds to JD 2418781.5
1986 Febr. 9.0 corresponds to JD 2446 470.5

The difference is 27 689 days.

Exercise : Find the date exactly 10000 days after 1991 July 11.
Answer : 2018 November 26.
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Day of the Week

The day of the week corresponding to a given date can be obtained
as follows. Compute the JD for that date at Oh, add 1.5, and divide
the result by 7. The remainder of this division will indicate the
weekday, as follows: if the remainder is O, it is a Sunday, 1 a
Monday, 2 a Tuesday, 3 a Wednesday, 4 a Thursday, 5 a Friday, and
6 a Saturday.

The week was not modified in any way by the Gregorian reform of
the Julian calendar. Thus, in 1582, Thursday October 4 was followed
by Friday October 15.

Example 7.e — Find the weekday of 1954 June 30.
1954 June 30.0 corresponds to JD 2434923.5
2434923.5 + 1.5 = 2434925

The remainder of the division of 2434925 by 7 is 3.
Hence it was a Wednesday.

Day of the Year

The number N of a day in the year can be computed by means of
the following formula [1].

M+9

275M)
12

N o= INT (53

- K % INT (

Y 4D -30

where M is the month number, D the day of the month, and
kK =1 for a leap (bissextile) year,
kK = 2 for a common year.

N takes integer values, from 1 on January 1, to 365 (or 366 in
leap years) on December 31.

Example 7.f — 1978 November 1l4.

Common year, M=11, D=14, K=2.
One finds N~ = 318.

Example 7.g — 1988 April 22.

Leap year, M =4, D=22, K =1.
One finds N = 113.
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Let us now consider the reverse problem: the day number N in the
year is known, and the corresponding date is required, namely the
month number M ‘and the day D of that month. The following algorithm
was found by A. Pouplier, of the Société Astronomique de Liége, Bel-~
gium [2].

As above, take

K =1 1in the case of a leap year,
K =2 in the case of a common year.

9 (K+N)

275 +0.98 }

M = INT [

If ~¥<32, then M =1

M+9

275M )
12

9

D = N - INT ( + Kk x INT { ) + 30
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Chapter 8

Date of Easter

In this Chapter we give a method for calculating the date of the
Christian Easter Sunday of a given year — not the Jewish Pesah.

Gregorian Easter

The following method has been given by Spencer Jones in his book
General Astronomy {(pages 73-74 of the edition of 1922). It has been
published again in the Journal of the British Astronomical Associa-
tion, Vol. 88, page 91 (December 1977) where it is said that it was
devised in 1876 and appeared in Butcher's Ecclesiastical Calendar.

Unlike the formula given by Gauss, this method has no exception
and is valid for all years in the Gregorian calendar, hence from the
year 1583 on. The procedure for finding the date of Easter is as
follows :

Divide by Quotient Remainder
the year x 19 - a
the year x 100 b c
b 4 d e
b+ 38 25 f
b-f+1 3 g -
19a+b-d-g+ 15 30 — h
c 4 i k
32+ 2e+2i-h-k 7 e 1
a+ 11h + 221 451 m -
h+1-7m+ 114 31 n P

67
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Then n
p+1

number of the month (3 =March, 4 =April),
day of that month upon which Easter Sunday falls.

If the computer language has no 'modulo' function or no 'remain-
der' function, the calculation of the remainder of a division must
be programmed carefully. Suppose that the remainder of the division
of 34 by 30 should be found. On the HP-67 and HP-41C pocket calcu-
lators, for instance, we find

34/30 = 1.133333333

the fractional part of which is 0.133333333. When multiplied by
30, this gives 3.999999990. This result differs from 4, the cor-
rect value, and may give a wrong date for Easter at the end of the
calculation.

Try your program on the following years :

1991 — March 31 1954 — April 18
1992 — April 19 2000 — April 23
1993 — April 11 1818 — March 22

The extreme dates of Easter are March 22 (as in 1818 and 2285)
and April 25 (as in 1886, 1943, 2038).

The rule for finding the date of Easter Sunday is well known:
Easter is the first Sunday after the Full Moon that happens on or
next after the March equinox. Actually, the rules for finding the
Easter date were fixed long ago by the Christian clergy. For the
purposes of these rules, the Full Moon is reckoned according to an
ecclesiastical computation and is not the real, astronomical Full
Moon. Likewise, the equinox is always assumed to fall on March 21;
actually, it can occur a day or two sooner.

In 1967, for instance, the equinox was on March 21, and the Full
Moon on March 26 (UT date). The first Sunday after March 26 was
April 2. Nevertheless, Easter Sunday was March 26.

During the period 1900-2100, the purely astronomical rule yields
another date for Easter Sunday than the ecclesiastical rule for the
following years: 1900, 1903, 1923, 1924, 1927, 1943, 1954, 1962,
1967, 1974, 1981, 2038, 2049, 2069, 2076, 2089, 2095, and 2096.

A period of 5700000 years is required for the cyclical recur-
rence of the Gregorian Easter dates. It has been found that the most
frequent Gregorian Easter date is April 19.
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Julian Easter

In the Julian calendar, the date of Easter can be found as fol-
lows.

Divide by Quotient Remainder
the year x 4 - a
the year x 7 - b
the year «x 19 - c
19¢ + 15 30 - d
2a + 4b - d + 34 7 - e
d+ e+ 114 31 f g

Then f = number of the month (3 =March, 4 =April),
g+1 = day of that month upon which Easter Sunday falls.

The date of the Julian Easter has a periodicity of 532 years.
For instance, we find April 12 for the years 179, 711 and 1243.






Chapter 9

Dynamical Time and Universal Time

The Universal Time (UT), or Greenwich Civil Time, is based on the
rotation of the Earth. The UT is necessary for civil life and for
the astronomical calculations where local hour angles are involved.

However, the Earth's rotation is generally slowing down and,
moreover, this occurs with unpredictable irregularities. For this
reason, the UT is not a uniform time.

But the astronomers need a uniform time scale for their accurate
calculations (celestial mechanics, orbits, ephemerides). From 1960
to 1983, in the great astronomical almanacs such as the Astronomical
Ephemeris, use was made of a uniform time scale called the Ephemeris
Time (ET) and defined by the laws of dynamics: it was based on the
planetary motions. In 1984, the ET was replaced by the Dymamical
Time, which is defined by atomic clocks. The Dynamical Time is, in
fact, a prolongation of the Ephemeris Time.

One distinguishes a Barycentric Dynamical Time (TDB) and a Ter-
restrial Dynamical Time (TDT). These times differ by at most 0.0017
second, the difference being related to the motion of the Earth on
its elliptical orbit around the Sun (relativistic effect). Because
this very small difference can be neglected for most practical pur-
poses, we will not make the distinction between TDB and TDT, and we
will name both simply TD (Dynamical Time).

The exact value of the difference AT = TD - UT can be deduced
only from observations. Table 9.A gives the value of AT for the be-
ginning of some years. Except for the two last values, they are
taken from the Astronomical Almanac for 1988 {1].

For epochs in the near future, one may extrapolate the values of
Table 9.A. For instance, we can use the provisional values

AT = +60 seconds in 1993
AT = +67 seconds in 2000
AT = 480 seconds in 2010
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TABLE
AT = TD - UT (in seconds) for the beginning

9.A

of some years

Year AT Year AT Year AT Year AT Year AT
1620 +124 1700 + 9 1780 +17 1860 + 7.9 1940 +24.3
1622 115 1702 9 1782 17 1862 7.5 1942 25.3
1624 106 1704 9 1784 17 1864 6.4 1944 26.2
1626 98 1706 9 1786 17 1866 5.4 1946 27.3
1628 91 1708 10 1788 17 1868 2.9 1948 28.2
1630 +85 1710 +10 1790 +17 1876 + 1.6 1950 +29.1
1632 79 1712 10 1792 16 1872 -1.0 1952 30.0
1634 74 1714 10 1794 16 1874 - 2.7 1954 30.7
1636 70 1716 10 1796 15 1876 - 3.6 1956 31.4
1638 65 1718 11 1798 14 1878 - 4.7 1958 32.2
1640 +62 1720 +11 1800 +13.7 1880 - 5.4 1960 +33.1
1642 58 1722 11 1802 13.1 1882 - 5.2 1962 34.0
1644 55 1724 11 1804 12.7 1884 - 5.5 1964 35.0
1646 53 1726 11 1806 12.5 1886 -~ 5.6 1966 36.5
1648 50 1728 11 1808 12.5 1888 -~ 5.8 1968 38.3
1650 +48 1730 +11 1810 +12.5 1890 - 5.9 1970 +40.2
1652 46 1732 11 1812 12.5 1892 -6.2 1972 42.2
1654 44 1734 12 1814 12.5 1894 - 6.4 1974 44 .5
1656 42 1736 12 1816 12.5 1896 - 6.1 1976 46.5
1658 40 1738 12 1818 12.3 1898 - 4.7 1978 48.5
1660 +37 1740 +12 1820 +12.0 1900 - 2.7 1980 +50.5
1662 35 1742 12 1822 11.4 1902 - 0.0 1982 52.2
1664 33 1744 13 1824 10.6 1904 + 2.6 1984 53.8
1666 31 1746 13 1826 9.6 1906 5.4 1986 54.9
1668 28 1748 13 1828 8.6 1908 7.7 1988 55.8
1670 +26 1750 +13 1830 + 7.5 1910 +10.5 1990 +56.9
1672 24 1752 14 1832 6.6 1912 13.4 1992 58.3
1674 22 1754 14 1834 6.0 1914 16.0

1676 20 1756 14 1836 5.7 1916 18.2

1678 18 1758 15 1838 5.6 1918 20.2

1680 +16 1760 +15 1840 + 5.7 1920 +21.2

1682 14 1762 15 1842 5.9 1922 22.4

1684 13 1764 15 1844 6.2 1924 23.5

1686 12 1766 16 1846 6.5 1926 23.9

1688 11 1768 16 1848 6.8 1928 24.3

1690 +10 1770 +16 1850 + 7.1 1930 +24.0

1692 9 1772 16 1852 7.3 1932 23.9

1694 9 1774 16 1854 7.5 1934 23.9

1696 9 1776 17 1856 7.7 1936 23.7

1698 9 1778 17 1858 7.8 1938 24.0
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For other epochs outside the time interval of Table 9.A, an ap-
proximate value of AT (in seconds) can be deduced from the follo-~
wing relation due to Morrison and Stephenson [2]:

AT = -15 + 0.00325 (year - 1810)2

where 'year' can be taken with decimals, if needed. This formula can
be written as

AT = 102.3 + 123.57T + 32.5712 (9.1)

where T is measured in centuries from the epoch 2000.0, or, if the
Julian Day is used, as

_ (JD - 2382148)2
AT = =15+ U048 480

With these expressions, the uncertainty of UT can reach as much
as two hours back to 4000 B.C. Future improvements of the formula
will benefit the user when converting from TD to UT, but will not
change algorithms, programs, ephemerides or tables given with the
uniform time scale of TD.

In 1984, Stephenson and Morrison [3] published two other parabo-
lic expressions for AT in the past. The period from 390 B.C. to
A.D. 1600 was covered by two separate parabolic fits:

from -390 to 4948 : AT = 1360 + 320T + 44.37T2
from +948 to +1600 : Ar = 25.572

where T is the time difference in centuries from A.D. 1800, and AT
is obtained in seconds.

Two years later, Stephenson and Houlden [4] gave yet two other
expressions for AT in the past:

(i) at any time before A.D. 948 : AT = 1830 ~ 405E + 46.5E2
(ii) from A.D. 948 to 1600 : AT = 22.5¢t2

where E is the number of centuries from A.D. 948, and t is the num-
ber of centuries from A.D. 1850,

Formulae (i) and (ii) are equivalent to the following expressions,
where T is the time in centuries from J2000.0 (7 < 0):

before A.D. 948 : 2715.6 + 573.36T + 46.572
from 948 to 1600 : 50.6 + 67.57 + 22,572

The quantity AT was negative from A.D. 1871 to 1901. It should
be noted that AT is positive both for the remote past and for the
distant future.

Except for the years 1871-1901, an instant given in UT is later
than the instant in TD having the same numerical value. For example,
the instant 1990 January 27, Ob UT is an instant 57 seconds later
than 1990 January 27, OB TD. We have UT = TD - AT.
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Example 9.a — New Moon took place on 1977 February 18 at 3B37M408
Dynamical Time (see Example 47.a).

At that instant, AT was equal to +48 seconds. Consequently, the
corresponding Universal Time of that lumar phase was

3h37m40s - 485 = 3h36ms)s,

Example 9.b — Suppose that the position of Mercury should be
calculated for February 6 at 6B Universal Time
of the year +333.

Here we have

_ 333.1 - 2000 _ _
T= “"Tov 16.669
for which formula (9.1) gives the value AT = 47074 seconds or 118
minutes. Hence, TD = 61 4 118 minutes = 7h58%, and the calculation

must be performed for 333 February 6 at 7h58™ TD.

Schmadel and Zech [5] have constructed the following approximation
for AT, valid for the entire time span 1800-1988. It represents the
values given in Table 9.A with a maximum error of 1.9 seconds.

AT = -0.000014 + 0.001 1486 + 0.003357 682 - 0.012462 83
- 0.022542 6% + 0.062971 85 + 0.079 441 8¢
- 0.146960 87 - 0.14927968 + 0.161416 6°
4+ 0.145932 610 - 0,067 47161 ~ 0.058 091 g12

In this formula, AT is expressed in days, and 0 is the time
elapsed since 1900.0 and expressed in Julian centuries.

Schmadel and Zech also provide expressions for shorter time spans.
For the years 1800-1899, the following expression gives AT (in days)
with a maximum error of 1.0 second:

AT = -0.000009 + 0.003844 6 + 0.083563 82 + 0.865736 93
+ 4.867575 8% + 15.845535 85 + 31.332267 86
+ 38.291999 67 + 28.316289 88 + 11.636204 99
+ 2.043794 910

For the years 1900 to 1987, the following expression gives AT
(in days) with a maximum error of 1.0 second:

AT = -0.000020 + 0.0002976 + 0.025184 62 - 0.181133 83
+ 0.553040 8% - 0.861938 85 + 0.677 066 86 - 0.212591 87

where 6 has the same meaning as for the first formula.
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It should be noted that these three expressions are empirical
formulae. Their use is prohibited outside of their defined validity
range !
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Chapter 10

The Earth’s Globe

The actual figure of the Earth's surface, including all the inequa-
lities of mountains and valleys, is incapable of geometric defini-
tion. Therefore, the ideal figure used in geodesy is that of the
mean sea level, extended through the continents. This is the geoid,
whose surface at every point is perpendicular to the local plumb-
line.

However, the heterogeneity of the Earth's interior and the at-
traction of mountains are such that the surface of the geoid is not
rigorously represented by any definable solid. An approximation suf-
ficient for most geographical and astronomical purposes is obtained
by considering it to be an ellipsoid of revolution.

Geocentric rectangular coordinates of an observer

The figure represents a meridian cross section of the Earth. C is
the Earth's center, N its north pole, S its south pole, EF the
equator, HK the horizontal
plane of the observer 0, and
M OP the perpendicular to HK.
The direction oM, parallel
to SN, makes with OH an angle
H ¢ which is the geographical
N $lo latitude of 0. The angle OPF
too is equal to ¢.

K The radius vector 0C, joi-
% /o ning the observer to the cen-

F ter of the Earth, makes with
¢ p the equator CF an angle ¢*
which is the geocentric lati-
tude of 0. We have ¢ = ¢' at
the poles and at the equator;
for all other latitudes

to'l < 4]

w
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Let f be the Earth's flattening, and b/a the ratio NC/CF of the
polar radius NC = b to the equatorial radius CF = a. In 1976 the
International Astronomical Union adopted the values

1

a = 6378.14 km, f = 598.257

from which we have

b=a(l-f) = 6356.755 km
Lo 1. = 0.99664719

The eccentricity e of the Earth's meridian is

e = J2f-f2 = 0.08181922

We have the relations

£ =222 l1-e2 = (1-f£)?

For a place at sea level,

2
tan ¢' = —Z; tan ¢

If H is the observer's height above sea level in meters, the
quantities p sin ¢' and p cos ¢', needed in the calculation of
diurnal parallaxes, eclipses and occultations, may be calculated
as follows :

tan u = 'il tan ¢
: y - b H :
p sin ¢ 5 sinu + €378 140 Sin 4]
H
t = e
p cos ¢ cos u + £378 140 cos ¢

The quantity p sin ¢' is positive in the northern hemisphere,
negative in the southern one, while p cos ¢' is always positive.

The quantity @ denotes the observer's distance to the center of
the Earth (oc in the Figure), the Earth's equatorial radius being
taken as unity.

Example 10.a — Calculate p sin ¢' and p cos ¢' for the Palo-
mar Observatory, for which

¢ = 4+33°21'22", H = 1706 meters.
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We obtain
¢ = 33°.356111
u = 33°267796
o sin ¢' = +0.546 861
o cos ¢' = +0.836339

Other formulae concerning the Earth's ellipsoid

For a given point on the ellipsoid, the difference between the
geographic latitude and the geocentric latitude can be found from

- ¢' = 692™73 sin 2¢ - 1".16 sin 4¢

The difference ¢ - ¢' reaches a maximum value for u = 45°. If
¢, and ¢! are the corresponding geographic and geocentric latitu-
des, we have

2 b

- — ? a— — o
tan ¢, = 3 tan ¢, = 3 o + ¢ = 90
whence, for the IAU 1976 ellipsoid,
o, = 45°05' 46".36 ¢d = 44°54'13".64

b, — ¢, = 11'32"73
The quantity p (for sea level) can be found from
o = 0.998 3271 + 0.001 6764 cos 2¢ -~ 0.0000035 cos 4¢

The parallel of latitude ¢ is a circle whose radius is

R = a cos ¢
P /1 - e2 sin? ¢
where, as above, e is the eccentricity of the meridian ellipse.

Hence, one degree of longitude, at latitude ¢, corresponds to a
length of

T
=~ R
180 P
The rotational angular velocity of the Earth (with respect to the
stars, not with respect to the vernal equinox) is

w = 7.292115018 x 10”> radian/second.

Strictly speaking, this is the value at the epoch 1989.5 [1]. It
decreases slowly with time because the rotation of the Earth is
slowing down — see Chapter 9.
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The linear velocity of a point at latitude ¢, due to the rotation
of the Earth, is WRp per second.

The radius of curvature of the Earth's meridian, at latitude ¢,
is

R = a (1 -e?)
™ (1-e?sin2¢)3?
and one degree of latitude corresponds to a length of Igﬁ Ry
Ry reaches a minimum value at the equator, name y (1-e =
6335.44 km, and a maximum value at the poles, 1-e 6399 60
kilometers.
Example 10.b — For ¢ = +42°, which is the latitude of Chicago,

we find
= 4747.001 km
1° of longitude = 82.8508 km
linear velocity = WRp = 0.34616 km/s
Rp = 6364.033 km
1° of latitude = 111.0733 km

Distance between two points on the Earth's surface

If the geographic coordinates of two points on the surface of the
Earth are known, the shortest distance s between these points, mea-
sured along the Earth's surface, can be calculated.

Let the first point having longitude and latitude L; and ¢,, res-
pectively. Let L, and ¢, be the coordinates of the second point.
We will suppose that these two points are at sea level.

If no great accuracy is needed, then we may consider the Earth as
being spherical with a mean radius of 6371 kilometers. Find the an-
gular distance d between the two points by means of the formula

cos d = sin ¢, sin ¢, + cos ¢; cos ¢, cos (L; - L,) (10.1)

which is similar to formula (16.1) for the angular separation bet-
ween two celestial bodies. Formula (10.1) does not work well when d
is very small — see Chapter 16.

Then the required linear distance is

= éé%%ﬁ££i kilometers (10.2)

where d is expressed in degrees.
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Higher accuracy is obtained by the following method, due to H.
Andoyer [2]; the relative error of the result is of the order of the
square of the Earth's flattening.

As before, let a be the equatorial radius of the Earth, and f
the flattening. Then calculate

¢+ ¢y ¢y -~ ¢y _Ll—LZ
F = ——— G = ——— A= ———=
2 2 2
S = sin?G cos?) + cos?F sin2?X
¢ = cos?26 cos?) + sin?F sin? A\
S
tan W = c
v _SC . .
R = e where ® is expressed in radians
3R-1 3R+1
D = = — = ——
2wa Hy T Hy 75

and the required distance will be

s = D (1 + fH sin?F cos?6 - fH, cos?F sin?G)

Example 10.c — Calculate the geodesic distance between the Ob-
servatoire de Paris (France) and the U.S. Naval
Observatory at Washington (D.C.), adopting the
following coordinates :

Paris : Ly = 2°20'14" East = =-2°20'14"
¢, = 48°50'11" North = +48°50'11"
Washington : L, = 77°03'56" West = 477°03'56"
¢, = 38°55'17"” North = +38°55'17"

We find successively

+43°.878 8889
+ 4°.957 5000
-39°.701 3889

= 0.216 42696
= 0.78357304

= 27°.724274 = 0.483879 87 radian
= 0.851 0555
D = 6172.507 km

and finally s = 6181.63 km with a possible error of the order of

mE QO o >»aMN
[
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50 meters.

If we use the approximate expressions (10.1) and (10.2), we ob-
tain

cos d = (0.567 146
d = 55°.44855
s = 6166 km
References
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Chapter 11

Sidereal Time at Greenwich

The sidereal time at the meridian of Greenwich, at OP Universal Time
of a given date, can be obtained as follows.

Calculate the JD corresponding to that date at OB UT (Chapter 7).
Thus, this is a number ending on .5. Then find T by

_JD - 2451545.0
T = T—ggson (11.1)

The mean sidereal time at Greenwich at O" UT is then given by
the following expression which was adopted in 1982 by the Interna-
tional Astronomical Union :

8. = 6h41m505,54841 + 8640 1845.812866 T

11.2
+ 05.093104 72 - 05,0000062 73 ¢ )

Expressed in degrees and decimals, this formula can be written

8, = 100.46061837 + 36000.770053608

11.3
+ 0.000387933 72 -~ 73/38710000 ( )
It is important to note that the formulae (11.2) and (11.3) are
valid only for those values of T which correspond to OF UT of a

date.

To find the sidereal time at Greenwich for any instant UT of a
given date, multiply that instant by 1.00273790935, and add the
result to the sidereal time at OB UT.

The mean sidereal time at Greenwich, expressed in degrees, can
also be found directly for any instant as follows. If JD is the
Julian Day corresponding to that instant (not necessarily 0P UT),
find T by formula (11.1), and then

83



84 ASTRONOMICAL ALGORITHMS

8, = 280.46061837 + 360.985 647 36629 (JD ~ 2451 545.0)
+ 0.000387933 72 - 73/38710000 (11.4)

If high accuracy is needed, this formula requires the use of a
computer working with a sufficient number of significant digits.

The sidereal time obtained by formulae (11.2), (11.3) or (11.4)
is the mean sidereal time, that is, the Greenwich hour angle of the
mean vernal point (the intersection of the ecliptic of the date with
the mean equator of the date).

The apparent sidereal time, or the Greenwich hour angle of the
true vernal equinox, is obtained by adding the correction Ay cos €,
where Ay 1is the nutation in longitude, and € the true obliquity
of the ecliptic (see Chapter 21). This correction for nutation is
called the nutation in right ascension or equation of the equino-

xes. Because Ay is a small quantity, the value of & may be taken
to the nearest 10" here.

If Ay is expressed in arcseconds (seconds of a degree), the cor-
rection in seconds of time is

AY cos €
15

Example 11.a — Find the mean and the apparent sidereal time at
Greenwich on 1987 April 10 at OB UT.

This date corresponds to JD 2446895.5, and formula (11.1) gives
T = -0.127296372 348
We then find by means of formula (11.2)

6, = 6M41m505.54841 - 1099 864.18158 seconds

or, by adding a convenient multiple of 86 400 seconds (the number of
seconds in one day),

eo

6141m505,54841 + 233355,81842
6h41m508,54841 + 6128Mm555,81842
13h10m465. 3668

which is the required mean sidereal time.

From Example 21.a we have, for the same instant, Ay = -3.788 and
€ = 23°26'36".85. [In fact, these values are for OB TD, not for OB
UT, but here we will neglect the very small variation of Ay during
the time interval AT = TD - UT.]

:éiégg-cos 23°.44357

= ~0%,2317, and the required apparent sidereal time is

Hence the nutation in right ascension is

13h10m465.3668 - 05,2317 = 130107465,1351
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Example 11.b — Find the mean sidereal time at Greenwich on 1987
April 10 at 19221mQ0S UT.

First, we calculate the mean sidereal time for that date at OR
Universal Time. We find 130h107465,3668 (see the previous Example).
Then
1.002 73790935 x 1gh21mQQs
1.002 73790935 x 69660 seconds
69 850.7228 seconds
= 19824m10s.7228

and the required sidereal time is

13h10m465.3668 + 19124m10s,7228 32h34m575 0896

8h34m57s, 0896

Alternatively, we may use formula (11.4). The Julian Day corres-
ponding to 1987 April 10 at 19h21m00S UT is

JD = 2446 896.30625

and, by (11.1), the corresponding value of T is -0.12727430. For-
mula (11.4) then gives

6, = —-1677831°.262 1266
or, by adding a convenient multiple of 360°,

8, = 128°.7378734

This is the required mean sidereal time in degrees. We obtain it
in hours by dividing it by 15 (since one hour corresponds to 15°) :

6, = 81,58252489 = 8h34m57s,0896,

the same result as above.







Chapter 12

Transformation of Coordinates

We will use the following symbols :

a

Q1950
$1950
Q2000
$2000

W™

E I N

right ascension. This quantity is generally expressed in
hours, minutes and seconds of time, and hence should first
be converted into degrees (and decimals) and then, if ne-
cessary, into radians, before it is used in a formula.
Conversely, if o has been obtained by means of a formula
and a calculating machine, it is expressed in radians or
in degrees; it may be converted to hours by division of
the degrees by 15, and then, if necessary, be converted
into hours, minutes and seconds;

declination, positive if north of the celestial equator,
negative if south;

right ascension referred to the standard equinox of B1950.0;
declination referred to the standard equinox of B1950.0;
right ascension referred to the standard equinox of J2000.0;
declination referred to the standard equinox of J2000.0;

ecliptical (or celestial) longitude, measured from the ver-
nal equinox along the ecliptic;

ecliptical (or celestial) latitude, positive if north of the
ecliptic, negative if south;

galactic longitude;
galactic latitude;
altitude, positive above the horizon, negative below;

azimuth, measured westwards from the South. It should be
noted that the navigators and the meteorologists count the
compass direction, or azimuth, from the North (0°), through
East (90°), South (180°) and West (270°). But astronomers
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disagree (*) and we shall measure the azimuth from the
South, because the hour angles too are measured from the
South. Hence, a celestial body which is exactly in the
southern meridian has A = H = 0°;

€ = obliquity of the ecliptic; this is the angle between the
ecliptic and the celestial equator. The mean obliquity of
the ecliptic is given by formula (21.2). If, however, the
apparent right ascension and declination are used (that
is, affected by the aberration and the nutation), the true
obliquity €+ Ae should be used (see Chapter 21). If a
and 8§ are referred to the standard equinox of J2000.0,
then the value of & for that epoch should be used, namely
€0000 = 23°26'21".448 = 23°.4392911. For the standard equi-
nox of B1950.0, we have €£i1g959 = 23°.4457889;

©
I

= the observer's latitude, positive if in the northern hemi-
sphere, negative in the southern one;

H

the local hour angle, measured westwards from the South.

If 6 is the local sidereal time, 6, the sidereal time at Green-
wich, and L the observer's longitude (positive west, negative east
from Greenwich), then the local hour angle can be calculated from

H= 06 -o or H=6,-L~a

If o is affected by the nutation, then the sidereal time too must
be affected by it (see Chapter 11).

For the transformation from equatorial into ecliptical coordi-
nates, the following formulae can be used:

sin @ cos € + tan 8§ sin €
tan A =
cos o

(12.1)

sin B = sin § cos € - cos § sin £ sin (12.2)

(*) William Chauvenet, on page 20 of his A Manual of Spherical and
Practical Astronomy (5th edition, 1891), Vol. I: "The origin
from which azimuths are reckoned is arbitrary; so also is the
direction in which they are reckoned; but astronomers usually
take the south point of the horizon as the origin, ... Naviga-
tors, however, usually reckon the azimuth from the north or
south points, according as they are in north or south latitude.

S. Newcomb, on p. 95 of his Compendium of Spherical Astrono-
my: "in practice it is measured either from the north or the
south point, and in either direction, east or west., — so this
great American astronomer had no specific preference.

A. Danjon, on p. 39 of his excellent Astronomie Générale
(Paris, 1959): "Le point S, origine des azimuts, (...) est
1'intersection du méridien et de 1'horizon, au sud.,,
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e

!
Note on the geographica\\ longitudes

In this work, the geographical longitudes are measured
positively westwards from the meridian of Greenwich, and ne-
gatively to the east. This convention has been followed by
most astronomers during more than one century — see for in-
stance References 1 to 6. For example, the longitude of Wash-
ington, D.C., is +77°04'; that of Vienna, Austria, is -16°23'.

We cannot understand why the International Astronomical
Union, having first decided to measure all planetographic
longitudes in the direction opposite to that of rotation,
then alters the system for the Earth (1982). We shall not
follow this IAU resolution, and we shall continue to consider
west longitudes as positive. This is in conformity with the
longitude systems on the other planets. On Mars and Jupiter,
for instance, the longitudes are measured positively to the
west, and this is why the longitude of their central meridian,
as seen from the Earth, is increasing with time.

Transformation from ecliptical into equatorial coordinates :

sin A _cos £ - tan B sin £

tan o = oo ) (12.3)
sin § = sin B cos € + cos B sin € sin A (12.4)
Calculation of the local horizontal coordinates :
sin H
tan A cos H sin ¢ - tan § cos ¢ (12.5)
sin h = sin ¢ siné + cos ¢ cos § cos H (12.6)

If one wishes to reckon the azimuth from the North instead of the
South, add 180° to the value of A given by formula (12.5).

Transformation from horizontal into equatorial coordinates :

tan H sin A
cos A sin¢ + tan h cos ¢
sin 8§ = sin ¢ sinh - cos ¢ cos h cos A

The current galactic system of coordinates has been defined by
the International Astronomical Union in 1959. In the standard equa-
torial system of B1950.0, the galactic (Milky Way) North Pole has
the coordinates

Q3950 = 12h49m = 192°.25, 61950 = +27°%.4
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and the origin of the galactic longitudes is the point (in western
Sagittarius) of the galactic equator which is 33° distant from the
ascending node (in western Aquila) of the galactic equator with the
equator of B1950.0.

These values have been fixed conventionally and therefore must
be considered as exact for the mentioned equinox of B1950.0.

Transformation from equatorial coordinates, referred to the stan-
dard equinox of B1950.0, into galactic coordinates:

sin (192°.25 - a)
cos (192°25 - a) sin 27°4 - tan & cos 27°%4

(12.7)

tan x =

1 = 303° - x

sin b sin § sin 27%4 + cos & cos 27°%4 cos (192°.25 - a)

(12.8)

Transformation from galactic coordinates into equatorial coordi-
nates referred to the standard equinox of B1950.0 :
sin (1 - 123°)
cos (1 ~123°) sin 27°.4 - tan b cos 27%4

tan y

Q@ =y + 12°25
sin 6 = sin b sin 27°4 + cos b cos 27°%4 cos (I - 123°)

If the 2000.0 mean place of the star is given instead of the
1950.0 mean place, then, before using formulae (12.7) and (12.8),
convert Q,gno and Spq0p tO G955 and Syg50. See Chapter 20.

The formulae (12.1), (12.3), etc., give tan A, tan o, etc., and
then A, a, etc., by the function arctangent. However, the exact
quadrant in which the angle is situated is then unknown. To remove
the ambiguity of 180°, apply the ATN2 function to the numerator and
the denominator of the fraction (instead of performing the actual
division), or use another trick — see 'The correct quadrant' in
Chapter 1.

Example 12.a — Calculate the ecliptical coordinates of the star
Pollux (B Gem), whose equatorial coordinates are

Qyp00 = 7045m185,946, 85000 = +28°01734".26.
Using the values a = 116°.328942, § = +28°.026183, and € =
23°,439 2911, formulae (12.1) and (12.2) give

+1.034 039 86
-0.44352398

+6°.684 170.

tan A =

g

whence A = 113°215630;
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Because a and § are\referred to the standard equinox of 2000.0,
A and B too are referred to that equinox.

Exercise. — Using the values of X and B found above, find a
and 8 again by means of formulae (12.3) and (12.4).

Example 12.b — Find the azimuth and the altitude of Venus on 1987
April 10 at 19h21m00s UT at the U.S. Naval Obser-
vatory at Washington, D.C. (longitude = +77°03'56"
= +5h08m155,7, latitude = +38°55'17").

The planet's apparent equatorial coordinates,
interpolated from an ephemeris, are

a = 23h09m168,641, § = -6°43'11",61

These are the apparent right ascension and declination of the
planet. We need the apparent sidereal time for the given instant.

We first calculate the mean sidereal time at Greenwich on 1987
April 10 at 19h21m00S UT, and find 8h34m575.0896 (see Example 11.b).

By means of the method described in Chapter 21, we find for the
same instant :

n

-3".868
23°26'36'.87

nutation in longitude : AY
true obliquity of the ecliptic : €

i

The apparent sidereal time at Greenwich is

-3.868
15

Hour angle of Venus at Washington :

8, = 8M134m575.0896 + ( cos £) seconds = 8h34m56s,853

H= 0, -L~-a
= 8h34m565,853 - 5hQ8mi55,7 ~ 23009m165,641

= -19h42m35s,488 = -19h,7098578 = -295°.647 867
= +64°,352133

Formulae (12.5) and (12.6) then give
+0.901 4712

tan 4 = 50.3636015 whence A = +68°.0337
h = +15°.1249

so the planet is 15 degrees above the horizon between the southwest
and the west.

It should be noted that formula (12.6) does not take into account
the effect of the atmospheric refraction, nor that of the planet's
parallax, nor the dip of the horizon. For the atmospheric refrac-
tion, see Chapter 15. The correction for parallax is dealt with in
Chapter 39.
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As an exercise, find the galactic coordinates of Nova Serpentis
1978, whose equatorial coordinates are

Q1950 = 17P48TS595.74, 81950 = ~14°43708M2
Answer : 1 = 12°9593, b = +6°0463.

Ecliptic and Horizon

If € is the obliquity of the ecliptic, ¢ the latitude of the
observer, and 6 the local sidereal time, then the longitudes of the
two points of the ecliptic which are (180° apart) on the horizon,
are given by

-cos 6

ta 3 3
n A sin € tan ¢ + cos € sin ©

(12.9)

The angle I between the ecliptic and the horizon is given by
cos I = cos € sin ¢ - sin € cos $ sin O (12.10)

In the course of one sidereal day, the angle I varies between
two extreme values. For example, for latitude 48°00’'N, with £ =
23°26', the extreme values of I are

90° - ¢ + € = 65°26' for 6 = 90°
90° - ¢ - e = 18°34' for © = 270°

It should be noted that I is not the angle which the daily path
of the Sun makes with the horizon.

Example 12.¢ — For € = 23°44, ¢ =+51°, 6 = 5100® = 75°, we
find, from formula (12.9),
tan A = -0.1879, whence X = 169°21' and A = 349°21'

Formula (12.10) gives I = 62°,
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Chapter 13

The Parallactic Angle

Suppose that on a bright morning we are looking at the Sun through a
piece of dark glass, and that we see a large sunspot near the wes-
tern ('right') limb of the Sun (Fig. 1, A). At noon, the Sun being
near the southern meridian, we note that the spot is lower (Fig. 1,
B). And in the afternoon, we see that the spot has moved still far-
ther along the Sun's limb (Fig. 1, C).

The spot did not actually move that much over the solar disk. It
is the whole image of the Sun which rotated clockwise. This can be
seen easier with the Moon (Figure 2).

This apparent rotation is easily understood when we consider the
diurnal motion of the celestial sphere. Each celestial body descri-
bes a parallel circle, a diurnal arc (Figure 3). Only when the Sun
(or the Moon) is exactly on the southern meridian, will the celes-
tial north be up, in the direction of the zenith.

The constellations show a similar effect. For an observer in the
northern hemisphere of the Earth, the constellation of Orion is in-
clined to the 'left' in the southeast, is upright in the south, and

OO Q D4

Fig. 1. The apparent displacement Fig. 2 The First-Quarter
of a sunspot in the course of the Moon for an observer in
day: in the morning (A), near noon the northern hemisphere :
(B), and in the afterncon (C). In (A) near the south, around
each of the three sketches, the the time of sunset; and
circle represents the solar disk, (B) later that evening.
and the zenith is at the top. The zenith is up.
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zenith
zenith T zenith
0" )
/
~ N \
East South West
horizon
Fig. 3

is inclined to the 'right' in the southwest.

In Figure 4, the circle represents the disk of the Sun (or that
of the Moon). The arc AB is a part of its diurnal arc on the celes-
tial sphere. C is the center of the disk. The direction of the ze-
nith and that of the celestial North are indicated. The latter di-
rection is perpendicular to the arc AB. Z is the zenith point of
the disk; it is the uppermost point of the disk at the sky as seen
by the observer at the given instant. N is the north point of the
disk; the direction CN points towards the northern celestial pole.

The angle ZCN is called the parallactic angle and is generally
designed by g. This parallactic angle has absolutely nothing to do
with the parallax! The name arises from the fact that the celestial
body moves along a parallel circle. Compare with the 'parallactic!'
mounting of a telescope.

By convention, the angle g is negative before, and positive af-
ter the passage through the southern meridian. Exactly on the meri-
dian, we have g = 0°,

The parallactic angle g can be calculated by means of the formula

sin H
tan ¢ cos § - sin § cos H

tan gq (13.1)

where, as in the preceding Chapter, ¢ is the geographical latitude
of the observer, § the declination of the celestial body, and H
its hour angle at the given instant.

Exactly in the zenith, the angle g is not defined. Indeed, in
that case we have H=0° and § = ¢, so formula (13.1) yields
tan ¢ = 0/0. This can be compared with somebody who is exactly at
the North Pole of the Earth: his geographical longitude is not de-
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fined, because all meridians of the Earth converge to his place. For

that special observer, all points of the horizon are in the southern
direction!

When a celestial body passes exactly through the zenith, the pa-
rallactic angle g suddenly jumps from -90° to +90°.

If the celestial body is on the horizon (hence rising or setting),
formula (13.1) simplifies greatly, namely

cos g = sin ¢

cos §

and in that case it is not necessary to know the value of the hour
angle H.

Fig. 4



Chapter 14

Rising, Transit and Setting

The hour angle corresponding to the time of rise or set of a celes-
tial body is obtained by putting h =0 in formula (12.6). This gives

cos H, = -tan ¢ tan §

However, the instant so obtained refers to the geometric rise or
set of the center of the celestial body. By reason of the atmosphe-
ric refraction, the body is actually below the horizon at the in-
stant of its apparent rise or set. The value of 0°34' is generally
adopted for the effect of refraction at the horizon. For the Sun,
the calculated times generally refer to the apparent rise or set of
the upper limb of the disk; hence, 0°16' should be added for the
semidiameter.

Actually, the amount of refraction changes with temperature,
pressure, and the elevation of the observer (see Chapter 15).
A change of temperature from winter to summer can shift the times
of sunrise and sunset by about 20 seconds in mid-northern and mid-
southern latitudes. Similarly, observing sunrise or sunset over a
range of barometric pressures leads to a variation of a dozen seconds
in the times. However, in this Chapter we shall use a mean value for
the atmospheric refraction at the horizon, namely the value of 0°34'
mentioned above.

We will use the following symbols :

L = geographic longitude of the observer in degrees, measured posi-
tively west from Greenwich, negatively to the east;

geographic latitude of the observer, positive in the northern
hemisphere, negative in the southern hemisphere;

e
1]

AT = the difference TD ~ UT in seconds of time;

h, = the 'standard' altitude, i.e. the geometric altitude of the
center of the body at the time of apparent rising or setting,
namely

97
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h, = -0°34! -0°.5667 for stars and planets;
h, = =0°50' = -0°,8333 for the Sun.

For the Moon, the problem is more complicated because h, is no
constant. Taking into account the variations of semidiameter
and parallax, we have for the Moon

h, = 0.7275% - 0°34'

where T is the Moon's horizontal parallax. If no great accu-
racy is required, the mean value h, = +0°125 can be used for
the Moon.

Suppose we wish to calculate the times, in Universal Time, of
rising, of transit (when the body crosses the local meridian at
upper culmination) and of setting of a celestial body at the ob-
server's place on a given date D. We take the following values from
an almanac, or we calculate them ourselves with a computer program:

— the apparent sidereal time 6, at O Universal Time on day D for
the Greenwich meridian, converted into degrees ;

— the apparent right ascensions and declinations of the body
a; and &8, on day D-1 at O" Dynamjcal Time

a, and 62 on day D -

a3 and 85 on day D+1 -
The right ascensions should be expressed in degrees too.

We first calculate approximate times as follows.

sin h, ~ sin ¢ sin §;

cos H, = (14.1)

cos ¢ cos §,

Attention! First test if the second member is between -1 and +1
before calculating H,. See Note 2 at the end of this Chapter.

Express H, in degrees. H, should be taken between 0° and +180°.
Then we have :

for the transit : m, = _al._i_l‘_;_e_"_ \
360
Hy
for the rising : my = m, - 366 > (14.2)
. H,
for the setting : m, = m + 366

/

These three values m are times, on day D, expressed as fractions
of a day. Hence, they should be between 0 and +1. If one or more of
them are outside of this range, add or subtract 1. For instance,
+0.3744 should remain unchanged, but -0.1709 should be changed to
+0.8291, and +1.1853 should be changed to +0.1853.
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Now, for each of the three m-values separately, perform the fol-
lowing calculation.

Find the sidereal time at Greenwich, in degrees, from

8 = 6, + 360.985647m

where m is either m,, m; or m,.

For n = m+ AT/86400, interpolate o from a;, a@,, 03 and §
from &,, &8,, 83, using the interpolation formula (3.3). For the
calculation of the time of tramsit, ¢ is not needed.

Find the local hour angle of the body from H =6 - L -~ a, and
then the body's altitude h by means of formula (12.6). This altitude
is not needed for the calculation of the time of transit.

Then the correction to m will be found as follows :
~ in the case of a transit,

- _ _H_
Am = - 365

where H is expressed in degrees and must be between —180 and
+180 degrees. (In most cases, H will be a small angle and be
between -~1° and +1°);

~ in the case of a rising or a setting,

h - hg

Am 360 cos § cos ¢ sin H

where h and h, are expressed in degrees.

The corrections Am are small quantities, in most cases being
between -0.01 and +0.01.

The corrected value of m is then m+ Am. If necessary, a new
calculation should be performed using the new value of m.

At the end of the calculation, each value of m should be conver-
ted into hours by multiplication by 24.

Example 14.a — Venus on 1988 March 20 at Boston,

+71°05' = +71°.0833,
+42°20" = +42°.3333,

From an accurate ephemeris, we take the following values:

longitude
latitude

[}

1988 March 20, 0h UT : @, = 11b50m585,10 = 177°.74208

1988 March 19, 0P TD : aq;
March 20, ¢h a,
March 21, 0h Qg

2h42m43525 = 40768021
2 46 55.51 = 41.73129
2 51 07.69 = 42.78204
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1988 March 19, OR TD : &, = +18°02'51"4 = +18704761
March 20, Oh §, = +18 26 27.3 = +18.44092
March 21, Oh 8, = +18 49 38.7 = +18.82742

We take h, = —0°.5667, AT = 4565, and find by formula (14.1)
cos Hy, = -0.317 8735, H, = 108°.5344, whence the approximate values:

transit : m, -0.18035, whence m, = +0.81965
rising : m; =m, - 0.30148 = +0.51817
setting : my, = m, + 0.30148 = +1.12113, whence +0.12113

Calculation of more exact times :

rising transit setting

m +0.51817 +0.81965 +0.12113
] 4°.79401 113°.62397 221°.46827

n +0.51882 +0.82030 +0.12178

inter- { o 42°.27648 42°.59324 41°.85927
polation | & +18°, 64229 +18°.48835

H -108°.56577 -0°.05257 +108°.52570

h -0°.44393 -0°.52711

Am -0.00051 +0.00015 +0.00017

corrected m +0,51766 +0.81980 +0.12130

A new calculation, using these new values of m, yields the new cor-
rections -0.000003, -0.000004, and -0.000004, respectively, which
can be neglected. So we have, finally:

rising : my = +0.51766, 240 x 0,51766 = 12h25m UT

transit : m, = +0.81980, 240 x 0,81980 = 19h41m UT

setting : m, = +0.12130, 24h x 0.12130 = 2h55% UT
NOTES

1. In Example l4.a we found that at Boston the time of setting was
2h55m UT on March 20. However, converted to local standard time
this corresponds to an instant on the evening of the previous day!
If really the time of setting on March 20 is needed in local time,
the calculation should be performed using the value m, = +1.12113
first found, instead of +0.12113.

2. If the body is circumpolar, the second member of formula (14.1)
will be larger than 1 in absolute value, and there will be no
angle H,. In such a case, the body will remain the whole day
either above or below the horizon.

3. If approximate times are sufficient, just use the initial values
m,, m; and m, given by (14.2).



Chapter 15

Atmospheric Refraction

Atmospheric refraction is the bending of light while passing through
the Earth's atmosphere. As a ray of light penetrates the atmosphere,
it encounters layers of air of increasing density, resulting in the
continuous bending of the light. As a result, a star (or the Sun's
limb, etc.) will appear higher in the sky than its true position.
The atmospheric refraction, which is zero in the zenith, increases
towards the horizon. At an altitude of 45°, the refraction is about
one arcminute; at the horizon, it amounts to about 35'. Thus the Sun
and the Moon are actually below the horizon when they appear to be
rising. Moreover, the rapidly changing refraction at low altitudes
gives the rising or setting Sun its familiar oval appearance.

Allowance must be made for atmospheric refraction when determi-
ning positions, and one distinguishes two cases:

— the apparent altitude h, of a celestial body has been measured,
and one should find the refraction R to be subtracted from h,
to obtain the true altitude h;

— the true 'airless' altitude h has already been calculated from
celestial coordinates and formulae of spherical trigonometry, and
we want to calculate the refraction R to be added to h in order
to predict the apparent altitude h,.

Almost all refraction formulae we have come across consider the
first case only: they are designed for deriving true altitudes from
observed ones. But here we will consider both cases.

For many purposes, 'average' meteorological conditions may be
assumed. However, anomalous refraction near the horizon, exemplified
by distortions of the setting Sun, should remind us that rigorous
exactness at very low altitudes cannot be reached.

When the altitude of the celestial body is larger than 15°, one
of the following two formulae may be used, as the case may be :

R = 58".294 tan (90° - h,) - 0™0668 tan3 (90°-h,) (15.1)
R = 58".276 tan (90° -h) ~ 0".0824 tan3 (90° -h) (15.2)

1ol
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The first formula is given by Smart [1], while the second one has
been derived by us from the first formula. For altitudes below 15°,
these expressions will give inaccurate, or even completely meaning-
less results.

It appears that, at high altitudes, the refraction is proportio-
nal to the tangent of the zenithal distance.

A surprisingly simple formula for refraction, with good accuracy
at all altitudes from 90° to 0°, was given by G.G. Bennett of the
University of New South Wales [2]. If the refraction R is expressed
in minutes of arc, Bemnett's formula is

1
R = 15.3
tan (h +__L3_1_) ( )
° T h,+4.4

where h, is the apparent altitude in degrees. According to Bennett,
this formula is accurate to 0.07 arcminute for all values of h,.
The largest error, 0.07 arcminute, occurs at 12° altitude.

It should be noted that for the zenith (h, = 90°) formula (15.3)
yields R = -0".08 instead of exactly zero. This can be rectified by
adding +0.0013515 to the second member of the formula.

Bennett also showed how his formula can be refined. Calculate R
by means of formula (15.3); then a correction to R, expressed in
minutes of arc, is

-0.06 sin (14.7R + 13)

where the expression between parentheses is expressed in degrees.
Calculated in this way, the maximum error is stated to be only 0.013
arcminute, or 0".9, for the whole altitude range 90°—0°. [At the ze-
nith, one finds R=-0".89, so expression (15.3), without further
correction, is better in this case.]

For the inverse problem, that of calculating the effect of re-
fraction when the true altitude h is known, Sazmundsson, of the Uni-
versity of Iceland, proposes the following formula [3] :

R = 1.02 (15.4)

tan (1 + 3 1+0§.311)

This formula is consistent with Bennett's (15.3) to within 4",
Again, it does not give exactly R =0 for h = 90°. This can be re-
medied by adding +0.001 9279 to the second member.

Formulae (15.1) to (15.4) assume that the observation is made at
sea level, when the atmospheric pressure is 1010 millibars, and when
the temperature is 10° Celsius. The effect of refraction increases
when the pressure increases or when the temperature decreases.

If the pressure at the Earth's surface is P millibars, and the
air temperature is T degrees Celsius, then the values of R given
by the formulae (15.1) to (15.4) should be multiplied by
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P, __283
1010 273+ 7T

However, this is only approximately correct. The problem is more
complicated because the refraction depends on the wave-length of the
light too! The expressions given in this Chapter are for yellow
light, where the human eye has maximum sensitivity.

Example 15.a — Calculate the apparent flattening of the solar
disk near the horizon, when the lower limb is at
an apparent altitude of exactly 0°30'. Assume a
true solar diameter of exactly 0°32', and mean
conditions of air pressure and temperature.

For h, = 0°5, formula (15.3) gives R = 28'.754, so the true al-
titude of the Sun's lower limb is

0°30' - 0°28'.754 = 0°01'.246
and hence the true altitude of the upper limb is
h = 0°01',246 + 0°32' = 0°33'.246 = 0°5541

For this value of h, formula (15.4) yields R = 24'.618, so the
apparent altitude of the Sun's upper limb is 33'.246 + 24'.618 =
57'.864, and the apparent vertical diameter of the solar disk is
57'.864 - 30" = 27'.864.

Consequently, the ratio of the apparent vertical diameter to the
horizontal diameter of the solar disk, under the conditions of this
Problem, is 27.864/32 = 0.871.

It should be noted that, while of course the azimuth is unchanged
by refraction, the horizontal diameter of the solar disk is very
slightly contracted by reason of the refraction. This is due to the
fact that the extremities of this diameter are raised along vertical
circles that meet at the zenith. Danjon [4] writes that the apparent
contraction of the horizontal diameter of the Sun is practically
constant and independent of the altitude, and that this contraction
is approximately 0".6.

For heights of a few degrees the results of the formulae should
be judged with care. Near the horizon unpredictable disturbances of
the atmosphere become rather important. According to investigations
by Schaefer and Liller [5], the refraction at the horizon fluctuates
by 0°.3 around a mean value normally, and in some cases apparently
much more. Remembering our Chapter about accuracy, it should be men-
tioned here that giving rising or setting times of a body more accu-
rately than to the nearest minute makes no sense.
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Chapter 16

Angular Separation

The angular distance d between two celestial bodies, whose right
ascensions and declinations are known, is given by the formula

cosd = sin &; sin §, + cos §; cos §, cos (a; - ay) (16.1)

where a; and §; are the right ascension and declination of one
body, and a, and 6, those of the other body.

The same formula may be used when the ecliptical (celestial)
longitudes A and latitudes B of the two bodies are given, provided
that a;, @, 6; and &, are replaced by Ay, X,, By and B,, res-
pectively.

Formula (16.1) may not be used when d is very near to 0° or to
180° because in those cases [cos d| 1is nearly equal to 1 and varies

very slowly with d, so that d cannot be found accurately. For
instance,

cos 0°01'00" = 0.999 999 958
cos 0°00'30" = 0.999 999 989
cos 0°00'15" = 0.999 999 997
cos 0°00'00" = 1.000000 000

If the angular separation is small, say less than 0°10', then
this separation should be calculated from

d = V(Ao .cos §)2 + (A6)2 (16.2)

where 40 is the difference between the right ascensions, A§ the
difference between the declinations, while & is the average of the
declinations of the two bodies. It should be noted that Aa and 48
should be expressed in the same angular units.

If Ac is expressed in hours (and decimals), A6 in degrees (and
decimals), then d expressed in seconds of a degree (") is given by

d = 3600 /(15 Aa. cos 8)2 + (AS)2 (16.3)

105
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If Aa is expressad in seconds of time (5), and A8 in seconds off
a dagree ("), then d expressed in " is given by

d = /(15 Aa . cos 6)2 + (A8)? (16.4)
Pormulae (16.2), (16.3) and (16.4) may be used only when d is
small.

Howaver, see also the alternative formulae at the end of this
Chapter.

Example 16.a — Calculate the angular distance between Arcturus
(a Boo) and Spica (a Vir).

The J2000.0 coordinates of these stars are

a Boo : 0 = 14h15m39s,7 = 213°.9154

81 = +19°10'57" = +19°.1825

a Vir : a, = 13025m11s5.6 = 201°.2983

8y = -11°09741" = ~-11°,1614
Formula (16.1) gives cos d = +0.840633, whence d = 32°.7930
= 32°48",

0f course, this distance holds only for the epoch for which the
stars' distances are given, namely 2000.0. It varies slowly with
time, by reason of the proper motions of the stars.

Exercise. — Calculate the angular distance between Aldebaran and
Antares. (Answer: 169°58')

One or both bodies may be moving objects. For example: a planet
and a star, or two planets. In that case, a program may be written
whare first the quantities &,, &, and (a;-a,) are interpolated,
after which d is calculated by means of one of the formulae (16.1)
or (16.2). Hint: from the interpolated quantities, calculate cos d
by means of formula (16.1)}. Then, if cos d < 0.999995, find d; but
if cos 4 > 0.999995, use formula (16.2).

Exercise. — Using the following coordinates, calculate the instant
and the value of the least distance between Mercury and Saturn.

1978 Mercury Saturn

0h TD a; 8, Qy 8,

Sep 12 10723m17565 | +11°31 46”3 10833701523 | +10°42'53"5
13 10 29 44.27 | +11 02 05.9 10 33 29.64 | +10 40 13.2
14 10 36 19.63 | +10 29 51.7 10 33 57.97 | 418 37 33.4
15 10 43 01.75 |+ 9 55 16.7 10 34 26.22 | +10 34 53.9

16 10 49 48.85 |+ 9 18 34.7 10 34 54.39) +10 32 14.9
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Answer : The least angular separation between the two planets was
0°03'44", on 1978 September 13 at 15006 5 TD = 15h06m UT.

As we see, this was a rather close conjunction. We must insist on
the fact that, in such a case, first the quantities §;, §, and
(a; - a,) should be interpolated, not the distances themselves. The
distance is to be deduced from the interpolated coordinates.

Suppose that, nevertheless, we try to interpolate the distances
themselves. By means of formula (16.1), we find the following dis-
tances, in degrees and decimals, for the five given times:

1978 Sep 12.0 TD d; = 275211

13.0 d, = 0.9917
14.0 dy = 0.5943
15.0 d, = 2.2145
16.0 dg = 3.8710

It is evident that the least distance occurs between 13.0 and
14.0 September, and closer to 14.0 than to 13.0,

If we now use the three central values d,, dj3, d, and we calcu-
late the value of the minimum by means of formula (3.4), we obtain
0°.5017 = 0°30'06"”. Taking the five values d; to ds, formula (3.9)
yields a 'better' value for ny, after which (3.8) is used to calcu-
late the value of the function for that value of n; this gives
0°.4865 = 0°29'11".

Both results are completely wrong, however; as has been mentioned
above, the exact value of the least distance is only 0°03'44". So,
what happened?

The reason is that the conjunction was a close one. Until a short
time before the least distance, Mercury was moving almost exactly
straight towards Saturn, and the angular distance between the two
planets was decreasing almost exactly linearly with time. Similarly,
some short time after the least distance, Mercury was moving almost
straight away from Saturn.

In the Figure on next page, the solid curve represents the true
variation of the angular separation between the two planets. Except
very close to the least distance, this curve consists of two almost
exactly straight segments (one near B, the other from C to D), and
in such a case the interpolation formulae are no longer valid!

Formulae (3.3), (3.4) and (3.5), for instance, suppose that the
function, in the considered part of the curve, is a parabola. But
the curve is no parabola, except very close to the minimum, inside
the small rectangle.

If we make use of the three points B, C, D, corresponding to the
three central distances d,, d3, d,, then by the interpolation for-
mula (3.3), we in fact draw a parabola through those three points;
it is the dashed curve in the Figure. This parabola differs conside-
rably from the true curve, and in particular its minimum is too
high.
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distance

angular

> time

And it would be of no help to use the five values d; to dg in-
stead of the three central ones, because the so0lid curve differs
even considerably from a polynomial of the fourth degree!

Hence, performing an interpolation from the distances cannot give
accurate results. As we have said, we must interpolate the original
coordinates separately, and only then can the accurate distance for
an intermediate instant be deduced. Using the interpolation formula
(3.8), we so find the value of the distance for several values of
the interpolating factor n :

n = -0.50 distance = 0021437

-0.45 0.14057
-0.40 0.07790
-0.35 0.07028
~-0.30 0.12815

The least separation occurs for n between -0.40 and -0.35, so we
calculate the angular distance for three more values, at smaller in-
tervals :

n = -0.38 distance = 006408
-0.37 0.06229
-0.36 0.06448

The tabular interval is now small enough so that formulae (3.4)
and (3.5) may be used. We find that the least separation is 0°.06228
0°03'44", for n= -0,370502, corresponding to September 13.629 498
September 13 at 158067.5 TD, as mentioned earlier.

[}

It is possible, however, to find the angular separation without
trying several values of the interpolating factor n, namely by ap-
pealing to rectangular coordinates. These coordinates u and v, in
seconds of arc, can be calculated as follows [1].
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Calculate the auxiliary quantity

206 264.8062

1 + sin?é; tan Aa tan-A?a

K =

where 206 264.8062 is the number of arcseconds in one radian. Then

u = -k (1 - tan §; sin A§) cos §, tan Aa

<
It

K (sin A8 + sin §; cos §; tan Ao tan A%L)

In the above expressions, a;, 8 are the right ascension and de-
clination of the first planet, and Aa = a, - a;, AS = §,-6;,
where Qy s §, are the right ascension and declination of the second
planet.

Let us calculate the values of u and v for three equidistant ti-
mes. For any intermediate time, then, their values can be interpola-
ted by means of formula (3.3), while their variation (in arcseconds
per unit of the tabular interval) is given by

uy - u
u’ = ——L~42 + n(uy +uy - 2u,)
where n is the interpolating factor, and u;, u,, uz are the three

calculated values of u, and with a similar expression for the varia-
tion v'.

Start from any value for the interpolating factor n; a good
choice is n =0. TFor this value of n, interpolate u and v by means
of formula (3.3), and find the variations uf and v'. Then the cor-
rection to n is given by

_ uu’ + vv'
An = - G'Z + v'2

So the new value of n is n+ An. Repeat the calculation for the
new value of n, until the correction An is a very small quantity,
for instance less than 0.000001 in absolute value.

For the final value of n, calculate u and v again. Then the
least distance, in arcseconds, will be /y2 + 2.

Let us apply this method to the above-mentioned conjunction bet-
ween Mercury and Saturn. The three chosen instants are 13.0, 14.0
and 15.0 September 1978. We find the following values for u and v,
retaining one extra decimal to avoid rounding errors :

u v
Sept. 13.0 -3322V44 -1307.48
14.0 +2088.54 + 463.66
15.0 +7605.36 +2401.71

For n =0, we have
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u = +2088.54 u’' = +5463.90
v =+ 463.66 v’ = +1854.595
whence An = -0,368582, and the corrected value of n is
0 - 0.368582 = -0.368582.
For this new value of n we find
u =+ 81.83 u' = +5424.89
v = -208.57 v!' = +1793.07
whence An = -0.002142, and the new corrected value of n is
-0.368582 - 0.002142 = -0.370724,
A new iteration gives An = -0.000003, so the final value of n

is -0.370724 - 0.000003 = -0.370727.

[This value differs from the value n = -0.370502 found before,
because in the present calculation we used the planet's positions
for only three instants instead of five. But the difference is only
0.000225 day, or 19 seconds.]

For the value n = ~0.370727, we find u = +70".20, v = -212".42,
and consequently the least distance between the two planets is

Yur+v? o= 224" = 3as,

as found before.

The same methods can be used if one of the bodies is a star, The
latter's coordinates are then constant, but it is important to note
that the o and 8 of the star should be referred to the same equi-
nox as that of the moving body.

If the moving body is a major planet, whose apparent right ascen-
sion and apparent declination referred to the equinox of the date
are given, then for the star the apparent coordinates too must be
used. If one takes the star's position from a catalogue, where it
is referred to a standard equinox (for instance that of 2000.0),
then the apparent a and § are found by taking into account the
proper motion of the star and the effects of precession, nutation
and aberration, as explained in Chapter 22.

If the a and 8§ of the moving body are referred to a standard
equinox (astrometric coordinates), then the o and 6 of the star
should be referred to this same standard equinox, the only correc-
tions being those for the proper motion of the star.

Alternative formulae

Although formula (16.1) is truly exact, mathematically speaking,
its accuracy is very poor for small values of the angle d, as has
been seen at the beginning of this Chapter. For this reason, several
alternative methods have been proposed.
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One of them [2] consists in using the old haversine (hav) func-
tion, which can be a great aid in certain astronomical calculations
involving small angles, as it can preserve significant digits. By
definition, for any angle 6, we have

1 - cos 6

hav 6 = 2

The cosine formula (16.1) for angular separation is precisely
equivalent to

hav d = hav A§ + cos §; cos §, hav Aa (16.5)

where Aa = a;-0a,, A8 =8;- §,. To use this formula on a computer
we can get the help of another identity, namely

hav 6 = sinz(%)

By means of formula (16.5), angular separations can be calculated
accurately for angles from nearly 180° all the way down to exactly
0 degree'!

V.J. Slabinski [3] offers another approach that can be used :
sin2d = (cos §; sin Aa)® + (sin &, cos §; cos Aa - cos §, sin §;)°
However, this formula cannot distinguish between supplementary

angles, for instance 144° and 36°, and has a poor accuracy when d
is close to 90°.
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Chapter 17

Planetary Conjunctions

Given three or five ephemeris positions of two planets passing 1
each other, a program can be written which calculates the time ¢
conjunction in right ascension, and the difference in declinatic
between the two bodies at that time. The method consists of calc
ting the differences Aa of the corresponding right ascensions,
then calculating the instant when Aa =0 by means of formula (3
or (3.7) in the case of three positions, or (3.10) or (3.11) in
case of five points. When that instant is found, direct interpol
tion of the differences A8 of the declinations, by means of for
(3.3) or (3.8), yields the required difference in declination at
time of conjunction.

Conjunctions in celestial longitude can be calculated in the
way, using of course the planets' geocentric longitudes and lati
des instead of their right ascensions and declinations.

It should be noted that neither the instant of the conjunctic
in right ascension, nor that of the conjunction in longitude
coincides with that of the least angular separation between the
two bodies.

Example 17.a — Calculate the circumstances of the Mercury-Ve
conjunction of 1991 August 7.

The following positions, for Oh TD of the date, are taken fre
an accurate ephemeris :

Mercury Aug. 5 o = 10M24™305125 § = +6°26'3205
6 10 25 00.342 +6 10 57.72
7 10 25 12.515 +5 57 33.08
8 10 25 06.235 +5 46 27.07
9 10 24 41.185 +5 37 48.45
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nus Aug. S o' = 10M27™27%175 8 = +4°04"41"83
6 10 26 32.410 +3 55 54.66
7 10 25 29.042 +3 48 03.51
8 10 24 17.191 +3 41 10.25
9 10 22 57.024 +3 35 16.61

We first calculate the differences of the right ascensions and
dse of the declinations, both in degrees and decimals :

Aug. 5 Aa = -0.737708 A8 = +2.363950
6 -0.383617 +2.250 850
7 -0.068 863 +2.158 214
8 +0.204 350 +2.088 006
9 +0.434 004 +2.042178

Applying formula (3.10) to the values of Aa, we find that Aa is
ro for the value n = +0.23797 of the interpolation factor. Hence,
# conjunction in right ascension takes place on

1991 August 7.23797

1991 August 7 at 5h428.7 TD
1991 August 7 at 5h42m UT.

#

With the value of n just found, and applying formula (3.8) to

B values of AS, we find AS = 42°.13940 or +2°08'. Hence, at the
ne of the conjunction in right ascension, Mercury is 2°08' north
Venus.

If the second body is a star, its coordinates may be considered
being constant during the time interval considered. We then have

[

ay’ = 0" = 0y =0, = ag

(31' = (32' = (33' = 64' = (55'
The program can be written in such a manner that, if the second
ject is a star, its coordinates must be entered only once.

The important remark given on page 110 does apply here too: the
srdinates of the star and those of the moving body must be refer-
i to the same equinox.
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As an exercise, calculate the conjunction in right ascension
between the minor planet 4 Vesta and the star © Leonis in May 1992.
The minor planet's right ascension and declination, referred to the
standard equinox of B1950.0, are as follows (from an ephemeris cal-
culated by Edwin Goffin) :

Oh TD @ 1950 81950
1992 May 8 117 06™308 379 +16°13'37'98
13 11 08 22.410 +15 44 26.59
18 11 10 52.398 +15 11 26.24
23 11 13 57.547 +14 34 58.49
28 11 17 35.311 +13 55 21.19

The star's coordinates for the epoch and equinox of 195Q0.0 are
a' = 11h11m375,089 and &' = +15°42'11".49, and the centennial pro-
per motions (that is, the proper motions per 100 years) are -0%5.420
in right ascension and -7'".87 in declination.

Consequently, from the proper motions during the 42.38 years
(0.4238 century) since 1950.0, we find that the star's position
referred to the equinox of 1950.0, but for the epoch 1992.38, is

a’ = 11h11m36s5,911, 8§’ = +15°42'08".15

Now, calculate the conjunction.

Answer : Vesta passes 0°40' south of 6 Leo on 1992 May 19
at 7h TD.






Chapter 18

Bodies in Straight Line

In this Chapter and in the next one, we shall deal with two problems
which have no importance 'scientifically', but which may be of value
to persons interested in nice celestial events or to authors of po-
pular articles.

Let (a, 6;), (a,, 8,), (o3, 63) be the equatorial coordinates
of the three heavenly bodies. These bodies are in 'straight line’
— that is, they lie on the same great circle of the celestial
sphere — if

tan §; sin(a, - a3) + tan 8§, sin(a;-ay)

; .
+ tan 63 sin(a;- a,) = 0 (18.1)

This formula is valid for ecliptical coordinates too, the right
ascensions @ being replaced by the longitudes A, and the declina-
tions § by the latitudes 8.

Do not forget that the right ascensions o are generally expres-
sed in hours, minutes and seconds. They should be converted to hours
and decimals, and then into degrees by multiplication by 15.

If one or two of the bodies are stars, then once again the impor-
tant remark given on page 110 does apply: the coordinates of the
star(s) must be referred to the same equinox as that of the planets.

Example 18.a ~ Find the instant when Mars is seen in straight
line with Pollux and Castor in 1994.

From an ephemeris of Mars and a star atlas, it is found that the
planet is in straight line with the two stars about 1994 October 1.
For this date, the apparent equatorial coordinates of the stars are:
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Castor (a Gem): @ = 7834m165.40 = 113°.56833
87 = +31°53'51".2 = +31°.89756
Pollux (B8 Gem) : a, = 7h45m008.10 = 116°.25042

8, = +28°02712".5 = +28°.03681

For our problem, these values of a;, 6;, a, and §, may be con-
sidered as constants for several days.

The apparent coordinates of Mars (a5, 63) are variable. Here
are their values, taken from an accurate ephemeris:

TD 04 84
1994 Sep. 29.0 | 7h55m55336 = 118798067 | +21°41'0370 = +21568417
30.0 | 7 58 22.55 = 119.59396 | 421 35 23.4 = +21.58983
Oct. 1.0 | 8 00 48.99 = 120.20413 | +21 29 38.2 = +21.49394
2.0 | 8 03 14.66 = 120.81108 | +21 23 47.5 = +21.39653
3.0 | 8 05 39.54 = 121.41475 | +21 17 51.4 = +21.29761

Using these values, the first member of formula (18.1) takes the
following values :

Sep. 29.0 +0.0019767
30.0 +0.001 0851

Oct. 1.0 +0.000 1976
2.0 -0.000 6855

3.0 -0.0015641

Using formula (3.10), we find that the value is zero for

1994 October 1.2233 = 1994 October 1, at 5B TD (UT)

In the preceding Example, we made use of the geocentric positions
of Mars. For this reason the result is, strictly speaking, valid
only for a geocentric observer, and for an observer for whom Mars is
at the zenith. But for the present problem, it is not worthwhile to
take into account the parallax of the planet, which is very small.
This is no longer true in the case of the Moon, whose parallax can
reach 1°. In this case, the topocentric position of the Moon should
be used (see Chapter 39).



Chapter 19

Smallest Circle containing three
Celestial Bodies

Let A, B, C be three celestial bodies situated not too far from
each other on the celestial sphere, say closer than about 6 degrees.
We wish to calculate the angular diameter of the smallest circle
containing these three bodies. Two cases can occur :

type I : the smallest circle has as diameter the longest side
of the triangle ABC, and one point is inside of the
circle;

type IT : the smallest circle is the circle passing through the
three points A, B, C.

Type I Type IT

The diameter A of the smallest circle can be found as follows.
Calculate the lengths (in degrees) of the sides of the triangle ABC
by means of the method given in Chapter 16.

Let a be the length of the longest side of the triangle, and b
and ¢ the lengths of the two other sides.
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If a > /b2 + ¢c2, then the grouping is of type I, and A =a;
if a < /b2 + ¢?, then the grouping is of type II, and

A = 2abc (19.1)
J(a+b+te) (a+b-c)(b+c-a)(atc-b)

Example 19.a — Calculate the diameter of the smallest circle con-
taining Mercury, Jupiter and Saturn on 1981 Sep-
tember 11 at OP Dynamical Time. The positions of
these planets at that instant are :

Mercury o = 1284108563 § =-5°37"54"2
Jupiter 12 52 05.21 -4 22 26.2
Saturn 12 39 28.11 -1 50 03.7

The three angular separations are found by means of (16.1) :

Mercury — Jupiter 3700152
Mercury — Saturn 3.82028
Jupiter — Saturn 4.04599 = a

Because 4.04599 < /(3.00152)2 + (3.82028)2 = 4.85836, we cal-
culate A by means of formula (19.1). The result is

A = 4°.26364 = 4°16'
This is an example of Type II.

As an exercise, perform the calculation for the planets Venus,
Mars and Jupiter on 1991 June 20 at OP TD, using the following po-
sitions :

Venus o = 9M0o5™41544 s =+18°30"30"0
Mars 9 09 29.00 +17 43 56.7
Jupiter 8 59 47.14 +17 49 36.8

Show that this case is of type I, and that A = 2°19°.

A program can be written in which first the right ascensions and
the declinations of the planets are interpolated, after which a, b,
¢, and finally A are calculated. With such a program, it is possible
to calculate (by trial) the minimum value of A of a grouping of
three planets. Indeed, A varies with time, and the method described
in this Chapter provides the value of A for only one given instant.

It is important to note that, while the positions of the planets
can be interpolated by means of the usual formulae, the values of
the circle's diameter A cannot. The reason is that the variation of
A generally cannot be represented by a polynomial; see for instance
the graph in Example 19.c.
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Example 19.b — In September 1981, there was a grouping of the
planets Mercury, Jupiter and Saturn. The positions
of these planets were as follows; instead of right
ascensions and declinations, we will use eclipti-
cal coordinates (longitudes and latitudes) here.

1981 Mercury Jupiter Saturn
Oh TD long. latit. long. latit. long. latit.
Sep. 7 1862045 -0°560 1927866 +1°117 1897324 +27226
8 187.482 -0.696 193.069 +1.116 189.439  +2.225
9 188.897 -0.833 193.272 +1.114 189.555 +2.224
10 190.290 -0.971 193.476 +1.113 189.671 +2.223
11 191.661 -1.109 193.681 +1.112 189.788 +2.222
12 193.008 -1.246 193.886 +1.110 189.906 +2.221
13 194.332 -1.384 194.092 +1.109 190.023 +2.220
14 195.631 -1.521 194.299 +1.108 190.142 +2.219

We will not give details here, and leave it as an exercise to the
reader. Let us just mention that from September 7.00 to 8.8l the
grouping was of type I, the diameter A of the smallest circle de-
creasing almost linearly from 7°01’ to 5°00'. From September 8.81
to 12.19, the grouping was of type II, and A reached a minimum of
4°14' on September 10.53. From September 12.19 on, the grouping was
of type I again, A increasing almost linearly with time.

Example 19.c¢ — Let us now consider the following fictitious case.
On March 12.0, the ecliptical coordinates (in deg-
rees) of three planets are as follows.

daily motion

longitude latitude in longitude
planet Pl 214.23 +0.29 +0.11
planet P2 211.79 +0.48 +0.20
planet P3 208.41 +0.75 +1.08

We suppose that the latitudes are constant and that the longitu-
des increase at the constant rates mentioned in the last column.

Again, we leave the actual calculation as an exercise to the rea-
der. Let us just illustrate the variation of the diameter A of the
smallest circle (see the Figure on next page). Note the discontinui-
ties at points A and B. Except during two short periods (March 15.87
to 15.91 near A, and March 17.93 to 18.05 near B), where the grou-
ping is of type II, we have type I. The least value of A, namely
1°55', occurs at B, on March 17.94.
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If one of the bodies is a star, once again the important rema
made on page 110 does apply: the coordinates of the star should
referrad to the same equinox as that for the planets.
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Chapter 20

Precession

The direction of the rotational axis of the Earth is not really fi-
xed in space. Over time it undergoes a slow drift, or precession,
much like that of a spinning top. This effect stems from the gravi-
tational attraction of the Sun and the Moon on the Earth's eguato-
rial bulge.

Due to the precession, the northern celestial pole {presently
situated near the star o Ursae Minoris, or Polaris) slowly turns
around the pole of the ecliptic, with a period of about 26 000 years;
as a consequence, the vernal equinox, the intersection of equator
and ecliptic, regresses by about 50" per year along the ecliptic.

Moreover, the plane of the ecliptic itself is not fixed in space.
Due to the gravitational attraction of the planets on the Earth, it
slowly rotates around a 'line of nodes', the speed of this rotation
being presently 47" per century.

The plane of the ecliptic and that of the equator, and the vernal
equinox, are the fundamental planes and the origin of two important
coordinate systems on the celestial sphere: the ecliptical coordi-
nates (longitude A and latitude B ) and the equatorial coordinates
(right ascension a and declination §). So, due to the precession,
the coordinates of the 'fixed' stars are continuously changing. Star
catalogues, therefore, list the right ascensions and declinations of
stars for a given epoch, such as 1900.0, or 1950.0, or 2000.0.

In this Chapter, we consider the problem of converting the right
ascension a and the declination § of a star, given for an epoch and
an equinox, to the corresponding values for another epoch and equi-
nox. Only the mean places of a star and the effect of the precession
alone are considered here. The problem of finding the apparent place
of a star will be considered in Chapter 22.
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Low accuracy

If no great accuracy is required, if the two epochs are not wide-
ly separated, and if the star is not too close to one of the celes-
tial poles, the following formulae may be used for the annual pre-
cessions in right ascension and declination:

A = m+ psino tan § A6 = pcos a (20.1)

where m and n are two quantities which vary slowly with time. They
are given by

m = 35.07496 + 05.001867T
n = 15.33621 - 05.00057 7T
n = 200431 - 000857

T being the time measured in centuries from 2000.0 (the beginning
of the year 2000). Here are the values of m and n for some epochs :

Epoch m n n

1700.0 35069 15338 20”07
1800.0  3.071 1.337  20.06
1900.0  3.073  1.337  20.05
2000.0  3.075  1.336  20.04
2100.0  3.077 1.336  20.03
2200.0  3.079  1.335  20.03

For the calculation of Aa, the value of n expressed in seconds
of time () must be used. Remember that 1° corresponds to 15".

In the case of a star, the effect of the proper motion should be
added to the values given by formulae (20.1).

Example 20.a — The coordinates of Regulus (o Leonis) for the
epoch and equinox of 2000.0 are

a, = lohogm22s.3 8, = +11°58'02"
and the annual proper motions are

-0%,0169 in right ascension,
+0".006 in declination.

Reduce these coordinates to the epoch and the equinox of 1978.0.

Here we have

a 152°.093 m
§ = +11°.967 n

38,075
1s.336 = 20".04

From the formulae (20.1) we deduce
Aa = +35,208, AS = -1771
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to which we must add the annual proper motion, giving an annual var-
iation of +3%.191 in right ascension, and -17".70 in declination.

Variations during ~22 years (from 2000.0 to 1978.0):

in a 438,191 x (-22) = -705.2 = -1m10s.2

in § : ~17".70 x (~22) = +389" = +6'29"
Required right ascension: a = q,~ 1M105.2 = 10hQ7m12S.1
Required declination : § = 6, +6'29" = +12°04'31"

Besselian and Julian Year

The International Astronomical Union has decided that from 1984
onwards the astronomical ephemerides should use the following system.

The new standard epoch is 2000 Jamnuary 1 at 128 TD, corresponding
to JDE 2451 545.0. This epoch is designated J2000.0. For purposes
of calculating positions of stars, the beginning of a 'year' differs
from the standard epoch J2000.0 by an integral multiple of the Ju-
lian year, or 365.25 days. For example, the epoch J1986.0 is 14 x
365.25 days before J2000.0, and hence the corresponding JDE is
2451545.0 - 14 x 365.25 = 2446431.50.

The letter J, in notations such as J2000.0 or J1986.0, indicates
that the unit of time (for star catalogues) is the Julian year. Pre-
viously, star position catalogues used for a standard epoch the be-
ginning of a Besselian year. The beginning of the Besselian solar
year is the instant when the mean longitude of the Sun, affected by
the aberration (-20".5) and measured from the mean equinox of the
date, is exactly 280°. This instant is always near the beginning of
the Gregorian civil year. The length of the Besselian year, equal
to that of the tropical year, was 365.242 1988 days in A.D. 1900,
according to Newcomb.

To distinguish an old epoch, based on the Besselian year, from
the new system, the letter B is used. For example,

B1900.0 = JDE 2415020.3135 = 1900 January 0.8135

B1950.0 = JDE 2433 282.4235 = 1950 January 0.9235
but

J2000.0 = JDE 2451545.00 exactly

J2050.0 = JDE 2469 807.50 exactly

and so on. The notation .0 after a year number (as in 1986.0 or
2000.0) signifies that the start of the year is meant.
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Rigorous method

Let T be the time interval, in Julian centuries, between J2000.0
and the starting epoch, and let t be the interval, in the same
units, between the starting epoch and the final epoch.

In other words, if (JD), and (JD) are the Julian Days correspon-
ding to the initial and the final epoch, respectively, we have

p = (JD)o - 2451545.0 . - D) - QD).
36525 36525

Then we have the following numerical expressions for the quanti-
ties 7, z and 6 which are needed for the accurate reduction of po-
aitions from one equinox to another [1]:

g = (2306'.2181 + 1".39656T - 0".00013972)¢t
+ (030188 - 0'.000344T)t2 + 0'.017 998¢3

z = (2306".2181 + 1'.39656T - 0'.00013972)¢
+ (109468 + 0'.000066T)t2 + 0".018203¢3

6 = (2004".3109 - 0".853307 ~ 0'.00021772)¢t
- (0".42665 + 0'.0002177)t? - 0".041833¢3

(20.2)

If the starting epoch is J2000.0 itself, we have T =0 and the
sxpressions (20.2) reduce to

g = 2306".2181¢t + 0".30188¢2 + 0'.017998¢3
z = 2306".2181¢t + 1'.09468¢2 + 0".018203¢3 (20.3)
6 = 2004".3109¢ - 0"™.42665¢t2 - 0'.041833¢3

Then, the rigorous formulae for the reduction of the given equa-
torial coordinates o, and 6, of the starting epoch to the coordi-
rates @ and 8§ of the final epoch are :

A = cos 6, sin (a, + T)
B = cos O cos 8, cos (0,+ ) - sin 6 sin §,

¢ = sin ® cos 8, cos (@, +Z) + cos 6 sin 6, (20.4)

A

3 sin § = C

tan (@ - z) =

The angle @ -2z can be obtained in the correct quadrant by ap-
»lying the 'second' arctangent function ATN2 to the quantities A
ind B, or by another procedure — see 'The correct quadrant' in
thapter 1.

If the star is close to the celestial pole, one should use the
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formula cos 6 = YA2 + B2 instead of sin § = cC.

Before making the reduction from a,, 8§, to a, 8, the effect of
the star's proper motion should be calculated.

Example 20.b — The star 6 Persei has the following mean coordi-
nates for the epoch and equinox of J2000.0 :
a, = 2440115, 986 8, = +49°13'42".48
and its annual proper motions referred to that
same equinox are
+05.03425 in right ascension,
-0".0895 in declination.

Reduce the coordinates to the epoch and mean equi-
nox of 2028 November 13.19 TD.

The initial epoch is J2000.0 or JD 2451 545.0, and the final one
is JD 2462 088.69. Hence, t = +0.288 670500 Julian centuries, or
28.867 0500 Julian years.

We first calculate the effect of the proper motion. The varia-
tions over 28.86705 years are

+0S.03425 x 28.86705 +05.989 in right ascension,
-0'.0895 x 28.86705 = ~-2'".58 in declination.

Thus the star's coordinates, for the mean equinox of J2000.0,
but for the epoch 2028 November 13.19, are

Q, = 2h44m115.986 + 05.989 = 2hy4my2s.975
8§, = +49°13'42'.48 - 2".58 = +49°13'39'.90

+41°.054 063
+49°,227 750

It

Since the initial equinox is that of J2000.0, we can use the
formulae (20.3). With the value t = +0.288670500, we obtain

T = +665".7627
z = +665".8288
6 = +578'". 5489

+0°.184 9341
+0°.184 9524
+0°.160 7080

A = +0.430494 05
B = +0.488 948 49
¢ = +0.758 685 86

a-z = +41°.362262
a = +41°.547214 2h46m118,.331
§ = +49°.348 483 = +49°20754™ 54
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Exercise. — The equatorial coordinates of a Ursae Minoris, for
the epoch and mean equinox of J2000.0, are
a = 2b31m48s,704, § = +89°15'50".72

and the star's annual proper motions for the same equinox are

+0%.19877 in right ascension,
-0".0152 in declination.

Find the coordinates of the star for the epochs and mean equino-
xes of B1900.0, J2050.0, and J2100.0.

Answer :
B1900.0 o = 1B227™33S9¢ § = +88°46'26"18
J2050.0 3 48 16.43 +89 27 15.38
J2100.0 5 53 29.17 +89 32 22.18

It should be noted that the formulae (20.2) and (20.3) are valid
only for a limited period of time. If we use them for the year
32700, for instance, we find for that epoch that o UMi will be at
declination -87°, a completely wrong result!

Using ecliptical coordinates

If, instead of the star's equatorial coordinates (right ascension
and declination), we use its ecliptical coordinates (longitude, la-
titude), the following rigorous method can be used [2].

T and t having the same meaning as before, calculate

n = (47".0029 - 0".06603T + 0'.00059872)¢t
+ (~0".03302 + 0'.0005987)t2 + 0'.000060¢t3
I = 174°.876384 + 328947897 + 0".60622T2 (20.5)
- (869".8089 + 0".504917)¢t + 0'.03536¢2 :
p = (5029".0966 + 2".22226T ~ 0'.00004272)¢

+ (1" 11113 - 0".0000427)t2 - 0".000 006>
The quantity N is the angle between the ecliptic at the starting
epoch and the ecliptic at the final epoch.

If the starting epoch is J2000.0, we have T =0 and the above
expressions reduce to

= 47".0029t - 0'.03302¢2 + 0" 0000603
174°.876 384 - 869'.8089t + 0".03536t2 (20.6)
5029".0966¢t + 1'.11113+2 - 0" 0000063

s T — R
non |
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Then, the rigorous formulae for the reduction of the given eclip-
tical coordinates X\, and B, of the starting epoch to the coordinates
A and B of the final epoch are :

A' = cos 1 cos B, sin(I—-X,) - sin n sin B,

B' = cos B, cos (Il - X,)

c* = cos N sin B, + sin N cos B, sin (I - A,)
A' .

tan(p+H->\)=?" sin 8 = ¢’

The old precessional elements

As we have said earlier, for star catalogues and for the purpose
of calculating star positions, the standard epoch is now J2000.0
and the unit of time is now the Julian year (365.25 days) or the
Julian century (36525 days). Previously, the beginning of the Bes-
selian year was taken as reference time and the unit of time was
the tropical year or the tropical century.

However, these are not the only differences between the old sys-
tem (the FK4) and the new one (the FK5). ['FK' means Fundamental
Katalog. ]

Firstly, there is a small error (the 'equinox correction'!) in the
zero point of the right ascensions of the FK4.

Secondly, as we shall see in Chapter 22, the aberrational displa-
cements of a star in longitude (AX) and in latitude (AR) resulting
from the motion of the Earth in its elliptic orbit are given by

AN = -k cos (@ - )) tex cos (m~ X)
cos B cos B
AB = -k s5in(@ - A) sin B + e« sin(w-}) sin B

where @ is the longitude of the Sun, 7w the longitude of the peri-
helion of the Earth's orbit, e the eccentricity of this orbit, and
K the constant of aberration.

Now, the second terms in the xright-hand sides of these expres-
sions are almost constant for a given star, because e, T—- X and B
vary very slowly with time. For this reason, it has been astronomi-
cal practice to leave this part of the aberration (the so-called
E-terms) in the mean positions of the stars.

Presently, the terms depending on the ellipticity of the Earth's
orbit are no longer included in the mean places of stars; they are,
instead, calculated in the reduction from mean to apparent places
(see Chapter 22).

A procedure for performing the conversion of mean positions and
proper motions of stars referred to the mean equinox and equator
B1950.0 and based on Newcomb's expressions for the precession (the
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FK4 system) to the new IAU system at J2000.0 (the FK5) can be found,
for instance, in the Astronomical Almanac for 1984 [3].

The precessional formulae (20.2) and (20.3) may be used only for
the stars referred to the FK5 system. If only FK4 positions and pro-
per motions are available, then one should proceed as follows to
calculate apparent star positions in the FK5 system:

1. use must be made of Newcomb's precessional formulae (see below);

2. in the reduction from mean to apparent place, the E-terms of the
aberration should be dropped;

3. to the final right ascension of the star, add the equinox cor-
rection

Ao = 05.0775 + 05.0850T

where T is the time in Julian centuries from J2000.0.

Newcomb's precessional expressions are the following ones.

Let (JD), and (JD) be the Julian Days corresponding to the ini-
tial and the final epoch, respectively. Then

(JD), - 2415020.3135 (D) - (ID),
= 36524.2199 t = T36524.2199
£ = (2304".250 + 1".396 T) £ + 0™.302¢2 + 0018t
z = ¢ + 07912 + 0'.001¢3
6 = (2004".682 - 0™853T)¢t - 0".426¢2 - 0".042¢t3

If the starting epoch is B1950.0, we have T = 0.5, and the above
expressions become

2304.948¢ + 0'.302¢2 + 0".018¢t3
2304".948¢ + 1".093¢2 + 0".019¢?
2004".255¢ — 0'.426¢t2 - 0".042¢?

@
1]

References
1. Astronomical Almanac for the year 1984 (Washington, D.C.; 1983),
page S19.
2. Connaissance des Temps pour 1984 (Paris, 1983), pages XXX and Xi.

3. Astronomical Almanac for the year 1984 (Washington, D.C.; 1983),
pages S34 —S35.



Chapter 21

Nutation and the Obliquity of the
Ecliptic

The nutation, discovered by the British astronomer James Bradley
(1693-1762), is a periodic oscillation of the rotational axis of
the Earth around its 'mean' position. Due to the nutation, the in-
stantaneous pole of rotation of the Earth oscillates around a mean
pole which advances by the precession around the pole of the ec-
liptic.

The nutation is due principally to the action of the Moon, and
can be described by a sum of periodic terms. The most important term
has a period of 6798.4 days (18.6 years), but some other terms have
a very short period (less than 10 days).

Nutation is conveniently partitioned into a component parallel
to, and one perpendicular to the ecliptic. The component along the
ecliptic is denoted by AV and is called the nutation in longitude ;
it affects the celestial longitude of all heavenly bodies. The com-
ponent perpendicular to the ecliptic is denoted by Ae and is called
the nutation in obliquity, since it affects the obliquity of the
equator to the ecliptic.

The quantities Ay and Ag€ are needed for the calculation of the
apparent place of a heavenly body and for that of the apparent side-
real time. For any given instant, AY and Ac can be calculated as
follows.

Find the time T, measured in Julian centuries from the Epoch
J2000.0 (JDE 2451545.0),

JDE - 2451 545

36525 (21.1)

T =

where JDE is the Julian Ephemeris Day; it differs from the Julian
Day (JD) by the small quantity AT (see Chapter 7). Then calculate
the following angles expressed in degrees and decimals. These ex-
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pressions are those which are provided by the International Astrono-
mical Union [1]; they differ slightly from those used in Chapront's
lunar theory (Chapter 45).

Mean elongation of the Moon from the Sun:

D = 297.85036 + 445267.111480T - 0.001914272 + T3/189474

Mean anomaly of the Sun (Earth):
M = 357.52772 + 35999.050340T7 - 0.000 160372 - 73/300000

Mean anomaly of the Moon :

134.96298 + 477 198.867 398T + 0.008 697272 + T3/56 250

M'

Moon's argument of latitude :

93.27191 + 483202.017538T - 0.0036825T72 + T3/327270

u

F

Longitude of the ascending node of the Moon's mean orbit on the
ecliptic, measured from the mean equinox of the date :

Q = 125.04452 - 1934.136 261T + 0.0020708T2 + T3/450000

The nutations in longitude (AY) and in obliquity (Ae) are then
obtained by making the sum of the terms given in Table 21.A, where
the coefficients are given in units of 0'.0001. These terms are
those of the '1980 TAU Theory of Nutation' [2] where, however, we
have neg’ ~cted the terms with a coefficient smaller than 0".0003.
The argun-nt of each sine (for AY) and cosine (for Ae) is a linear
combination of the five fundamental arguments D, M, M', F and Q.
For instance, the argument on the second line is -2D + 2F + 2Q.

0f course, if no great accuracy is needed, only the periodic
terms with the largest coefficients can be used.

If an accuracy of 0".5 in Ay and of 0'".1 in Ae are sufficient,
then we may drop the terms in T? and in T3 in the above expression
for §, and then use the following simplified expressions :

AP = -17".20 sin - 1".32 sin 2L - 0'.23 sin 2L’ + 0".21 sin 2Q
Ae = +9'".20 cos  + 0'".57 cos 2L + 0".10 cos 2L’ -~ 0'".09 cos 29

where L »nd L' are the mean longitudes of the Sun and the Moon,
respecti :ly:

It

280°, 4665 + 36 000.7698T
218°.3165 + 481 267°.88137T

t~
]
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TABLE 21.A

Periodic terms for the nutation in longitude (Ay)

and in obliquity (Ae).

The unit is 0".0001.

133

Argument Ay Ae
multiple of Coefficient of the Coefficient of the
sine cosine

D M M’ F Q of the argument of the argument
0 0 0 0 1 ~171996 -174.2T7 +92025 +8.97
-2 0 0 2 2 -13187 ~1.67T +5736 -3.17T
0 0 0 2 2 —=2274 -0.27 +977 -0.57
0 0 0 0 2 +2062 +0.27 -895 +0.57
0 1 0 0 0 +1426 -3.4r +54 -0.1r
0 0 1 0 0 +712 +0.17 -7

=2 1 0 2 2 -517 +1.27 +224 -0.6T
0 0 0 2 1 -386 -0.4r7 +200

0 0 1 2 2 -301 +129 -0.17
-2 -1 0 2 2 +217 -0.57 -95 +0.37
-2 0 1 0 0 ~158

-2 0 0 2 1 +129 +0.17 =70

0 0 -1 2 2 +123 =53

2 0 0 0 0 +63

0 0 1 0 1 +63 +0.17 -33

2 g -1 2 2 -59 +26

0 o -1 0 1 -58 -0.1r +32

0 0 1 2 1 -51 +27
-2 0 2 0 0 +48

0 0 -2 2 1 +46 -24

2 o] 0 2 2 -38 +16

0 0 2 2 2 -31 +13

0 0 2 0 0 +29
=2 0 1 2 2 +29 -12

0 0 0 2 0 +26
=2 0 0 2 0 -22

0 0 -1 2 1 +21 -10

0 2 0 0 0 +17 -0.17

2 0 -1 0 1 +16 -8
=2 2 0 2 2 -16 +0.17 +7

0 1 0 0 1 -15 +9
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(cont.)

TABLE 21.A
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The obliquity of the ecliptic

The obliquity of the ecliptic, or inclination of the Earth's axis
of rotation, is the angle between the equator and the ecliptic. One
distinguishes the mean and the true obliquity, being the angles
which the ecliptic makes with the mean and with the true (instanta-
neous) equator, respectively.

The mean obliquity of the ecliptic is given by the following for-
mula, adopted by the International Astronomical Union [1]:

€, = 23°26'21'".448 - 46".8150T - 0".00059 T2

21.2
+ 0%o00181373 ( )

where, again, T is the time measured in Julian centuries from the
epoch J2000.0.

The accuracy of formula (21.2) is not satisfactory over a long
period of time: the error in €, reaches 1" over a period of 2000
years, and about 10" over a period of 4000 years. The following im-
proved expression is due to Laskar [3]. Here, U is the time measu-
red in units of 10000 Julian years from J2000.0, or U = 7/100.

e, = 23°26'217448 - 4680793 1/

- 1.5502

+ 1999,25y3

- 51.38U*

- 249,67 US (21.3)
39.05 U
7.12 07
27.87 U8
5.
2.

79 U9
45 y10

+ + + +

The accuracy of this expression is estimated at 0'.01 after
1000 years (that is, between A.D. 1000 and 3000), and a few seconds
of arc after 10000 years.

It is important to note that formula (21.3) is valid only over a
period of 10000 years on each side of J2000.0, that is, for |Uj<1.
For U = +2.834, for example, the formula would yield g, = 90°, a
completely erroneous result !

The Figure on the next page shows the variation of &, from 10000
years before to 10000 years after A.D. 2000, According to Laskar's
formula, the inclination of the Earth's axis of rotation was a maxi-
mum (24°14'07") about the year -7530. And near the year +12030 a
minimum (22°36'41") will be reached. By a mere chance we are pre-
sently approximately half-way between these extreme values, near the
middle of the curve in the Figure. Here the curve is almost linear;
this is the reason why in (21.3) the coefficient of U2 is very small.

The true obliquity of the ecldptic is &= g, + Ag, where Ac
is the nutation in obliquity.
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€:o
24°00" p-
23°30' |-
23°00' I~
22030’ |-
1 1 1 1 I
-100 -50 0 +50 +100
Centuries since the year 2000
Example 21.a — Calculate AY, A€ and the true obliquity of the

ecliptic for 1987 April 10 at OR TD.
This date corresponds to JDE 2446 895.5, and we find

T = -0.127 296 372 348 §

D = -56383°.0377 = 136°.9623 A = -3'.788

M = -4225°,0208 = 94°.9792 Ae = +9'.443

M' = -60610°.7216 = 229°.2784 I

F = -61416°.5921 = 143°.4079 g, = 23°26'27".407

Q = 371°.2531 = 11°2531 € =23°26'36".850
References

1. Astronomical Almanac for the year 1984 (Washington, D.C.; 1983),
page S526.

2. Ibid., page S523.
3. J. Laskar, Astronomy and Astrophysics, Vol. 157, page 68 (1986).



Chapter 22

Apparent Place of a Star

The mean place of a star at any time is its apparent position on the
celestial sphere, as it would be seen by an observer at rest on the
Sun (or, more exactly, at the barycenter of the solar system), and
referred to the ecliptic and mean equinox of the date (or to the
mean equator and mean equinox of the date).

The apparent place of a star at any time is its position on the
celestial sphere as it is actually seen from the center of the mo-
ving Earth, and referred to the instantaneous equator, ecliptic and
equinox. It should be noted that :

— the mean equinox is the intersection of the ecliptic of the date
with the mean equator of the date:

— the true equinox is the intersection of the ecliptic with the
true (instantaneous) equator (that is, the equator affected
by the nutation);

~ there is no 'mean' ecliptic, because the ecliptic has a regular
motion.

mean eguator £q M

true eguator

= mean equinox
true equinox
rc MT = Ay

b2
I
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The problem of the reduction of the place of a star from the mean
place at one time (for instance, of a standard epoch and equinox) to
the apparent place of another time, involves the following correc-
tions :

(A) The proper motion of the star between the two epochs. We may as-
sume that by its proper motion each star moves on a great cir-
cle with an invariable angular speed. Except when the proper
motion is an important fraction of the polar distance of the
star, not only the proper motion itself, but also its compo-
nents in right ascension and declination with respect to a
fixed equinox may be considered as constants during several
centuries. Therefore, we start by finding the effect of the
proper motion when the axes of reference remain fixed, as in
Example 20.b;

(B) The effect of precession. This has been explained in Chapter 20;
(C) The effect of nutation (see below) ;
(D) The effect of annual aberration (see below);

(E) The effect of the annual parallax. 0f course, stellar paralla-
xes are of fundamental importance in astronomy. As George Lovi
writes [1] :

"Parallax is the only true gecmetrical link between us and
our nearer neighbors in that vast interstellar void. It has
enabled astronomers to create and calibrate procedures to
take us much farther out."

However, for the person wishing to calculate accurate star po-
sitions, the stellar parallax is a nuisance. Fortunately, stel-
lar parallaxes never exceed 0".8 and they may be neglected in
most cases. According to R. Burnham [2], only 13 stars brighter
than magnitude 9.0 are nearer than 13 light-years (4 parsecs)
and have a parallax exceeding 0'.25. These stars are a Cen-
tauri, Lalande 21185 (in Ursa Major), Sirius, & Eridani, 61
Cygni, Procyon, & Indi, %2398 (in Draco), Groombridge 34 (in
Andromeda), T Ceti, Lacaille 9352 (in Piscis Austrinus), Cor-
doba 29191 (in Microscopium), and the Star of Kapteyn (in Pic-
tor). None of these stars is near the ecliptic, and so none is
involved in occultations by the Moon or in close conjunctions
with planets.

For this reason, in what follows we shall neglect the effect
of the annual parallax in the calculation of the apparent po-
sition of a star.

The effect of nutation

The simplest and most direct method of applying the effect of
nutation to mean positions is to add AY to the ecliptical longitude
of the objects. The ecliptic and therefore the latitude of a body is
unchanged by nutation.

This procedure can profitably be used in the calculation of appa-
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rent positions of planets, where ecliptical coordinates are calcula-
ted first. Stellar positions, however, are generally given in the
equatorial system, so we prefer to calculate the correction in right
ascension and in declination directly.

First-order corrections to a star's right ascension a and decli-
nation 8 due to the nutation are

Aa; = (cos € + sin e sin @ tan 6) AY - (cos a tan §) 4e

A6, = (sin € cos a)AY + (sin a) Ae (22.1)

These expressions are invalid if the star is close to one of the
celestial poles. If this is the case, it is better to work in eclip-

tical coordinates and just add AY to the longitude, as mentioned
above.

The quantities AY and A€ can be calculated by means of the me-
thod described in Chapter 21, while € is the obliquity of the eclip-
tic given by formula (21.2).

The effect of aberration

Let A and B be the star's celestial longitude and latitude, «
the constant of aberration (20".49552), @ the true (geometric) lon-
gitude of the Sun, e the eccentricity of the Earth's orbit, and =
the longitude of the periheliomn of this orbit.

© can be calculated by the method described in Chapter 24, while

e = 0.016708617 - 0.0000420377 - 0.0000001236 72
T = 102°.93735 + 1°71953 T + 0°.00046 12

where T is the time in Julian centuries from the epoch J2000.0, as
obtained by formula (21.1).

Then the changes in longitude and in latitude of the star due to
the annual aberration are

AN = —K cos (@ -X) + ek _cos(m - 2)
cos B (22.2)
AB = —x sin B (sin(@-A) - e sin(1-)))

In equatorial coordinates, the changes in the right ascension a

and in the declination 6 of the star due to the annual aberration
are
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cos 0 cos © cos € + sin g sin @ N
Ao, = -«
cos §
cos O _cos M _cos € + sin g _sin T
+ eK
cos &
>(22.3)
AS, = -« [cos@ cos £ (tan e cos 8§ - sina sin §)
+ cosa sin 8§ sin @]
+ex [cosT cos € (tan € cos § - sin o sin §)
+ cosa sin 8 sin T ])

The total corrections to a and 6§, due to the nutation and the
aberration, are therefore Aa; + Aa, and AS; + A8,, respectively.
Calculated from the above formulae, both are expressed in seconds of
a degree (if Ay, Ae and K are expressed in the same units).

Important remark. — Formulae (22.2) and (22.3) are the complete
expressions for the components of the aberration. They include the
so-called E-terms, and should be used for the star positions given
in the FK5 [3] and in all catalogues based on it.

If, however, FK4 positions are used, those parts of formulae
(22.2) and (22.3) that contain the eccentricity e of the orbit of
the Earth should be dropped, as explained in Chapter 20.

Example 22.a — Calculate the apparent place of 8 Persei for
2028 November 13.19 TD.

The mean position of this star for that instant, including the
effect of proper motion, was found in Example 20.b, namely
a = 2h46m115.331 = 41°.5472 § = +49°20'54".54 = +49°.3485

The nutations in longitude and in obliquity, for the same in-
stant, can be found by means of the method given in Chapter 21. We
obtain

Ay = +14".861 Ae = +2'.705

Formula (21.2) gives €= 23°.436, while the Sun's true longitude,
calculated by means of the method ('low accuracy') given in Chapter
24, is @ = 231°.328. (An accuracy of 0.0l degree is sufficient in
this case.) We further find

T = +0.288 6705 e =0.016696 47 ™= 103°434

Putting the values of a, §, £, AY, Ae, @, e and T in formulae
(22.1) and (22.3), one finds
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+6".218
+6'.696

Aoy
Aa,

+15".843 08y
+30".047 26,

and the total corrections in right ascension and in declination are

Ao = +15".843 + 30". 047 = +45'".890 = +35.059
A§ = +6".218 + 6".696 = +12".91

Hence, the required apparent coordinates of the star are

2h46m115.331 + 35,059 = 2h46m145,390
+49°20'54".54 + 12".91 = +49°21'07".45

W

o Q
4

The Ron-Vondrak expression for aberration

Expressions (22.2) and (22.3) contain the effect of the eccentri-
city of the Earth's orbit and will provide quite accurate results.
Nevertheless, these results are mnot rigorously exact because the
said formulae are based on an unperturbed motion of the Earth in its
elliptical orbit. Actually, the Earth's motion is somewhat perturbed
by the attraction of the Moon and that of the planets. And the Sun
itself is slowly moving around the center of mass of the solar sys-
tem, mainly due to the actions of the giants Jupiter and Saturn.

If a very accurate result is required, stellar aberration must,
in fact, be computed from the total velocity of the Earth referred
to this barycenter. One method for performing this calculation has
been presented by Ron and Vondrak [4].

If 7= (JD -~ 2451545)/36525 is, as before, the time in Julian
centuries elapsed since J2000.0, then calculate, for the given in-
stant, the following angles expressed in radians :

L2 = 3.1761467 + 1021.3285546T
L3 = 1.7534703 + 628.30758497T
Ly = 6.2034809 + 334.0612431T
L5 = 0.5995465 + 52.96909657T
Le = 0.8740168 + 21.3299095T
L7 = 5.4812939 + 7.4781599T
Lg = 5.3118863 + 3.81330367T

L' = 3.8103444 + 8399.6847337T
D = 5.1984667 + 7771.377 14867T
M' = 2.3555559 + 8328.69142897T
F = 1.6279052 + 8433.4661601T

The quantities L2 up to L8 are the mean longitudes of the pla-
nets Venus to Neptune referred to the mean equinox of J2000.0 (the
effects of Mercury and Pluto are negligible), while L’ is the mean
longitude of the Moon.
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(cont.)

22.A

TABLE
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2te

202 - 413
3L3 - 2L4

L'+ 2D - M'
8L2 - 1213
8L2 ~ 1413

2L4

3L2 - 4L3
2L3 - 2Ls

312 - 313

2L3 - 2L4
L' -2p

25
26

27

28
29
30
31

32
33
34

36

Then the components X', v', 2*
of the velocity of the Earth
with respect to the barycenter
of the solar system, in the
equatorial J2000.0 reference
frame, are equal to the sums of
the terms given in Table 22.A.
Here, the argument of each sine
and cosine is a linear combina-
tion of some of the angles L2,
L3, etec. For instance, the terms
on line 12 of the table have as
argument the angle

A4 = 5013 ~8L4+ 3L5

and the contributions to the ve-
locity components are :

to X' ¢ + 8sin A -28cos A4
to Y': ~-258in A ~ 8cos A4
to 7' : -1l sin 4 - 3cos A4

The values of x', Y', 2’ thus
obtained are expressed in units
of 1078 astronomical unit per
day. Let ¢ be the velocity of
light in the same units, namely

c = 17314 463 350.

Then the changes in the star's
right ascension and declination
due to the annual aberration

are, in radians, given by for-~
mulae (22.4).
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Ao = Y’ cos o - X' sin a
c cos & (22.4)
AS = (X' cos @ +Y' sina) sin8 - 2' cos § )

[+

It is important to note that the Earth's velocity components, as
calculated by means of Table 22.A, are given in a rectangular coor-
dinate system based on the fixed equator and equinox of FK5 for the
epoch J2000.0, not with respect to the mean equinox of the date.
Consequently, if the Ron-Vondrik method for the calculation of the
aberration is preferred instead of the formulae (22.3), then the
corrections (22.4) should be performed before the calculation of the
effects of precession and nutation. In other words, the sequence of
the calculations will be: FK5 position (J2000.0), proper motion,
aberration (Table 22.A and expressions 22.4), precession (expres-
sions 20.3 and 20.4), nutation (Chapter 21 and expressions 22.1).

Example 22.b — Let us again calculate the apparent place of 8
Persei for 2028 November 13.19 TD, but now using
the Ron-Vondrak algorithm.

As in Example 20.b, we find that the star's coordinates for the
epoch 2028 November 13.19, but referred to the mean equinox of
J2000.0, are (allowing for proper motion)

It

2h44m125.9747 +41°.054 0613
+49°13739",896 = +49°,.227 7489

o
§

We keep extra decimals here, in order to avoid rounding errors.
We further find

T = +0.288 670500 L' = 2428.551 5363 rad.
L2 = 298.0035712 rad. D = 2248.5657939

L3 = 183.127 3350 M' = 2406.603 0750

Ly = 102.637 1070 F = 2436.1207984

L5 = 15.8901621

Le = 7.0313324 X' =-1363700

L7 = 7.6400181 Y’ = + 990286

Lg = 6.4126746 Z' = + 4291285

Formulae (22.4) then give

Ao = +0.000145 252 radian
A8

i

+0°,008 3223
+0.000 032723 radian = +0°.001 8749

1§

so that the new values for o and 6, corrected for aberration, but
still in the J2000.0 reference frame, are

41°.054 0613 + 0°.008 3223
49°,227 7489 + 0°.001 8749

+41°.062 3836
+49°.229 6238

o R
fl
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The effect of precession is obtained by means of formulae (20.4).
The values of ¢, z and 6, for the same instant, were found in
Example 20.b. We now find

A = +0.430549 036
B = +0.488 867 290
¢ = +0.758 706 993

new a = +41°.5555635
new & = +49°.3503415

Finally, the corrections for the nutation are given by (22.1).
As in Example 22.a, we have AY = +14'".861, Ae = +2'". 705, and € =
23°.436. We find

—+0°.004 4011
—+0°.0017270

Aa, = +15".844
A8 = +6M217

]

Hence, the required apparent right ascension and declination are

@ = 41°.5555635 + 0°.004 4011 = 41°.5599646
2h46Mm148,392

+49°.352 0685
+49°21'07".45

n

6 = 49°.3503415 + 0°.0017270

]

Compare these results with those of Example 22.a.
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Chapter 23

Reduction of Ecliptical Elements from one
Equinox to another one

For some problems, it may be mnecessary to reduce orbital elements of
a planet, a minor planet or a comet from one equinox to another one.
0f course, the semimajor axis a and the eccentricity e do not chan-
ge when the orbit is referred to another equinox, and hence only the
three elements

i = inclination,
w = argument of perihelion,
Q. = longitude of ascending node

should be taken into consideration here. Let i,, w,, £, be the
known values of these elements at the initial epoch, and i, w,
their (unknown) values at the final epoch.

In the Figure on page 146, E, and Y, are the ecliptic and the
vernal equinox at the initial epoch, and £ and y the ecliptic and
equinox at the final epoch. The angle between the two ecliptics is
denoted by n, and the orbit's perihelion by P.

As in Chapter 20, let 7 be the time interval, in Julian centu-
ries, between J2000.0 and the initial epoch, and t the interval, in
the same units, between the initial epoch and the final epoch.

Then calculate the angles M, I and p by means of formulae (20.5)
or, if the initial epoch is J2000.0, by means of (20.6).

Find Y = II + p. Then the quantities i and Q - ¥, and hence ,
can be calculated from

cos i = cos i, cos NN + sin i, sinn cos (,~ 1) (23.1)
sin i sin(R -Y) = sin i, sin (Q,-1) (23.2)
sin i cos(R -y) = -sinn cos i, + cos n sin i, cos (Q,— 1) :

Formula (23.1) should not be used when the inclination is small.

147
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Then w = w, + Aw, where Aw is found from
sin i sin Aw = ~-sinn sin(Q,- 1) (23.3)
sin i cos Aw = sin i, cos N - cos i, sin n cos (.- 1) '

If i, =0, then Q, is not determined, and we have i =n and
Q= ¥ + 180°.

It is important to note that the method described here reduces
the orbital elements i, w and € from one equinox to another one,
but the new orbital elements remain valid for the same epoch as the
initial elements. It is, in fact, the same orbit. The calculation of
the orbital elements for another epoch is a completely different
problem (celestial mechanics!) which we cannot discuss here.

Example 23.a — 1In their Catalogue Général des Orbites de Cométes
de 1'an ~466 a 1952 [Observatoire de Paris, Sec-
tion d'Astrophysique de Meudon (1952)], F. Baldet
and G. De Obaldia give the following orbital ele-
ments for comet Klinkenberg (1744), referred to
the mean equinox of B1744.0 :

i, = 47°.1220
w, = 151°.4486
Q, = 45°7481

Reduce these elements to the standard equinox of B1950.0.

The final epoch is B1950.0, or (JD) = 2433282.4235 (see Chapter
20), and the initial epoch is 206 tropical years earlier (because
both epochs correspond to the beginning of a Besselian year), whence

(JD), = 2433282.4235 - (206 x 365.2421988) = 2358 042.5305.
We then find

= -2.559958 097

+2.059 956 002

+97".0341 = +0°.026 954

174°.876 384.~ 10205".9108 = 172°.041 409
+10352".7137 = +2°.875754

174°.917 163

€y E3 N
LR L L )

Then formulae (23.2) give

sin i sin (2 -y) = -0.5906 3831
sin i cos (R -¥) = -0.43408084

A
B

o

from which we deduce sin i = va2+p2 = 0.73299372, i=47°.1380

-1y = AIN2(a, B) = -126°313473
@ = 48°.6037

Formulae (23.3) give sin i sin Aw +0.0003 7917
sin i cos Aw = +0.73299362



23. Reduction of ecliptical Elements 149

whence Aw = +0°.0296, and w = 151°,4782.

In his catalogue of Cometary Orbits (sixth edition; 1989), Mars-
den gives the values i = 47°1378, w = 151°.4783, Q = 48°.6030.
The discrepancy of 0°0007 between the values of Q results from the
fact that the new IAU precession formulae yield for the general pre-
cession in longitude a value which is a little larger (+1'".1 per
century) than that adopted by Newcomb. The effect over 206 years
(from 1744 to 1950) amounts to 0.0006 degree.

If the initial equinox is that of B1950.0, and the final equinox
that of J2000.0, then the formulae simplify to the following ones.

s = 0.0001139788 ¢ = 0.999999 9935 \
W= Q,—- 174°.298782
A = sin i, sin W
B = ¢sini, cosW - § cos i,
sin i = v a2 + B? tan x = % $ (23.4)
Q= 174°.997 194 + x
and finally w = w,+ Aw, with

- S sin W

tan Aw — "
Csin i, — S cos i, cos W }

Care must be taken for the correct quadrant of the angles x and
Aw. For safety, they should be calculated by means of the ATN2
function, if the latter is available in the computer language, for
instance x = ATN2 (&, B). Except when the orbital inclination is
very small, the new value of § should be approximately 0°.7 larger
than the initial value £,, and Aw must lie near 0°, not near 180°.

Example 23.b — S. Nakano calculated the following orbital ele-
ments for the 1990 return of periodic comet Encke
(Minor Planet Circular 12577) :

Epoch = 1990 Nov 5.0 TD = JDE 2448 200.5
T = 1990 Oct. 28.54502 TD
g = 0.3308858 i = 11°93911
a = 2.209 1404 Q = 334°.04096 1950.0
e = 0.850 2196 w = 186°.24444

We wish to reduce i, £ and w to the equinox J2000.0, and we
find successively

W = +159°.742178
A = +0.071628 4465
B = —-0.194187 3149
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sin i = 0.2069767 Q = 334°.75006
i = 11°.94524 Aw = -0°.01092
x = +159°.752 866 w = 186°.23352

The other orbital elements (T, g, a, e) remain unchanged, and the
Epoch is still 1990 November 5.0.

However, formulae (23.4) assume that the elements i,, W, and £,
are given in the FK5 system. To convert elements from B1950.0/FK4
to J2000.0/FK5, one may use the following algorithm due to Yeomans
(Note from D. K. Yeomans, Chairman IAU System Transition Committee,
to Richard West, President of IAU Commission 20; 1990 August 10).

Let

4.500016 88 degrees
5.198 562 09 degrees
0.
L

[ ]

006 519 66 degrees
+ Q,

T gy

It

Then we have

sin (w ~ w,) sin = sin J sin

cos {(w - w,) sin = sin i, cos J + cos i, sin J cos W
cos
sin (L' + Q) sin

cos (L'+ Q) sin

= sin i, sin

[
|

w
J
= cos i, cos J - sin i, sin J cos W
w
= cos i, sin J

+ sin i, cos J cos W

from which i,  and @ can be deduced.

Example 23.c — Same starting values i,, I, and w, as in
Example 23.b.

We obtain

i= 11794521
Q = 334.75043 FK5, J2000.0
w = 186.23327




Chapter 24

Solar Coordinates

Low accuracy

When an accuracy of 0.0l degree is sufficient, the position of
the Sun may be calculated by assuming a purely elliptical motion of
the Earth; that is, the perturbations by the Moon and the planets
may be neglected. The calculation can be performed as follows.

Let JD be the Julian (Ephemeris) Day, which can be calculated by
means of the method described in Chapter 7. Then the time T, mea-
sured in Julian centuries of 36525 ephemeris days from the epoch
J2000.0 (2000 January 1.5 TD), is given by

_JD - 2451 545.0
T o= St (24.1)

This quantity should be calculated with a sufficient number of
decimals. For instance, five decimals are not sufficient (unless the
Sun's longitude is required with an accuracy not better than one de-
gree): remember that T is expressed in centuries, so that an error
of 0.00001 in T corresponds to an error of 0.37 day in the time.

Then the geometric mean longitude of the Sun, referred to the
mean equinox of the date, is given by

L, = 280°.46645 + 36 000°.76983 T + 0°.000 303272 (24.2)
The mean anomaly of the Sun is

M = 357°.52910 + 35999°.050307 - 0°.000 155972

- 0°.000 000 48 T3 (24.3)
The eccentricity of the Earth's orbit is
e = 0.016708617 - 0.0000420377T - 0.000000 1236 72 (24.4)

Then find the Sun's equation of center ¢ as follows:
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¢ =+ (1°.914600 - 0°.0048177 - 0°00001472) sin M
+(0°.019993 - 0°.000101T) sin 2M
+ 0°.000290 sin 3M

Then the Sun's true longitude is
@=1L,+¢C
and its true anomaly is v =M +C.

The Sun's radius vector, or the distance from the Farth to the
Sun, expressed in astronomical units, is given by

1.000001018 (1 - e2)
l+ecosv

(24.5)

The numerator of the fraction is a quantity which varies slowly
with time. It is equal to

0.9997190 in the year 1800

0.999 7204 1900
0.999 7218 2000
0.9997232 2100

The Sun's longitude @, obtained by the method described above,
is the true geometric longitude referred to the mean equinox of the
date. This longitude is the quantity required for instance in the
calculation of geocentric planetary positions.

If the apparent longitude A of the Sun, referred to the true
equinox of the date, is required, it is necessary to correct @ for
the nutation and the aberration. Unless high accuracy is required,
this can be performed as follows.

Q
A

125°.04 - 1934°,136T
@ - 0°.00569 - 0°.00478 sin Q

]

In some instances, for example in meteor work, it is necessary
to have the Sun's longitude referred to the standard equinox of
J2000.0. Between the years 1900 and 2100, this can be performed
with sufficient accuracy from

@2000 = @ - 0°.01397 (year —2000)

If the Sun's longitude, referred to the standard equinox of
J2000.0, should be obtained with a higher accuracy than 0.0l degree,
then the method given in Chapter 25 can be used.

The Sun's latitude, referred to the ecliptic of the date, never
exceeds 1".2. Unless high accuracy is required, this latitude may
be put equal to zero. In that case, the Sun's right ascension a and
declination &8 can be calculated from (24.6) and (24.7), where ¢,
the obliquity of the ecliptic, is given by (21.2).
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_ cos £ sin @
tan a = S (24.6)

sin § = sin € sin @ (24.7)

If the apparent position of the Sun is required, then in formulae
(24.6) and (24.7) one should use )\ instead of @, and € should be
corrected by the quantity

+0°.00256 cos @ (24.8)
Formula (24.6) may of course be transformed to
tan 0 = cos £ tan @

and then it must be remembered that @ must be in the same quadrant
as ®. However, if the ATN2 function is available in the computer
language, it is better to leave formula (24.6) unchanged, and to
apply the ATN2 function to the numerator and the denominator of the
fraction: «a = ATN2 (cos £ sin @, cos @).

Example 24.a — Calculate the Sun's position on 1992 October 13
at OB TD = JDE 2448 908.5.

We find successively :

T = -0.072183 436

L,= -2318°19281 = 201°80719

M = —2241°.00604 = 278°.99396

e = 0.016 711651

c = -1°.89732

@ = 199°.90987 = 199°54'36"

R = 0.99766

Q= 264°65

A = 199°.90894 = 199°54'32"

£,= 23°26'24™83 = 23°44023 [by (21.2)]
£ = 23°43999

Gapp = -161°.61018 = +198°.38082 = 13h.225388 = 13n1303134
Sapp = ~7°.78507 = =7°47'06"

The correct values, calculated by means of the complete VSOP87
theory (see Chapter 31), are:
199°54'26".18
199°54!21".56

geometric long., mean equinox of date: @
apparent longitude : A
B
R

apparent latitude : +0".72

radius vector : 0.997 608 53
apparent right ascension : 13b13m308,749
apparent declination : -7°47'01". 74
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Higher accuracy

In their book [1], Bretagnon and Simon give a method for the cal-
culation of the longitude of the Sun with an accuracy that is suffi-
cient for many applications. Their method yields an accuracy of
0.0006 degree (2".2) between the years 0 and +2800, and of 0.0009
degree (3'.2) between -4000 and +8000, yet only 49 periodic terms
are used.

A very high accuracy, better than 0.0l arcsecond, is obtained
when use is made of the complete VSOP87 theory (see Chapter 31), but
for the Earth this theory contains 2425 periodic terms on the magne-
tic tape provided by the Bureau des Longitudes, namely 1080 terms
for the Earth's longitude, 348 for the latitude, and 997 for the
radius vector. Evidently, this big amount of numerical data cannot
be reproduced in this book. Instead, we give in Appendix II the most
important terms from the VSOP87, allowing the calculation of the
position of the Sun with an error not exceeding 1" between the years
-2000 and +6000. The procedure is as follows.

Using from Appendix II the data for the Earth, calculate the
latter's heliocentric longitude I, latitude B and radius vector R
for the given instant, as explained in Chapter 31. Don't forget that
the time T is measured from JDE 2451 545.0 in Julian millennia
(365250 days), not in centuries, and that the final values obtained
for L and B are in radians.

To obtain the geocentric longitude @ and latitude B of the Sun,
add 180° (or T radians) to L, and change the sign of B :

@ = 1 + 180°, B = -B

Conversion to the FK5 system. — The Sun's longitude & and latitude 8
obtained thus far are referred to the mean dynamical ecliptic and
equinox of the date defined by the VSOP planetary theory of P. Bre-
tagnon. This reference frame differs very slightly from the standarc
FKS system mentioned in Chapter 20. The conversion of @ and B to
the FK5 system can be performed as follows, where T is the time in
centuries from 2000.0, or T =10T.

Calculate
A = @& - 1°397T - 0°00031T?

Then the corrections to @ and B are

A®
AB
These corrections are needed only for very accurate calculations.

They may be dropped if use is made of the abridged version of the
VSOP87 given in Appendix II.

-0'".09033

24.9
£0".03916 (cos A’ - sin A’) (24.9)

1]

Apparent Place of the Sun. — The Sun's longitude © obtained thus
far is the true ('geometric') longitude of the Sun referred to the
mean equinox of the date. To obtain the apparent longitude X, the
effects of nutation and aberration should be taken into account.
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For the nutation, simply add to @ the nutation in longitude AY
(see Chapter 21).

To take the aberration into account, apply to the Sun's geometric
longitude the correction

_20".4898

R (24.10)

where R is the Earth's radius vector in astronomical units. The nu-
merator of the fraction is equal to the constant of aberration (k =
20".49552) multiplied by a (1 - e2), the same as the numerator in
formula (24.5). Therefore, the numerator of (24.10) actually varies
very slowly with time, being equal to 20".4893 in the year 0, and to
20".4904 in the year +4000.

But, more important, formula (24.10) will not give a rigorously
exact result, because it assumes an unperturbed motion of the Earth
in its elliptical orbit. By reason of perturbations, mainly due to
the Moon, the result can be up to 0'™.01 in error.

When a very high accuracy is needed — this is not the case when
the data of Appendix II are used for the calculation — the correc-
tion to the Sun's longitude due to the aberration can be obtained
as follows, Find the variation AX of the Sun's longitude, in arc-
seconds per day, as explained below. The correction for aberration
is then

- 0.005775518 R AX (24.11)

where R is, as before, the Sun's radius vector in astronomical
units. The numerical constant is the light-time for unit distance,
in days (= 8.3 minutes).

After the Sun's longitude has been corrected for nutation and
aberration, we have obtained the Sun's apparent longitude A.

The apparent longitude X\ and latitude B of the Sun can then be
transformed into the apparent right ascension a and declination §
by means of formulae (12.3) and (12.4), where £ is the true obli-
quity of the ecliptic, that is, affected by the nutation in obli-
quity Ae.

The variation AXA of the geocentric longitude of the Sun, in arc-
seconds per day, in the fixed reference frame J2000.0, can be ob-
tained by means of the formula given on the next page, where T is
the time in millennia from J2000.0 (as in Chapter 31), and the ar-
guments of the sines are in degrees and decimals.

In that expression given here, only the most important periodic
terms have been retained. Consequently, the result will not be ri-
gorous, but AX will not be more than 0"™.1 in error. If the resul-
ting value of AM is used to calculate the Sun's aberration by means
of (24.11), the error will be less than 0".001.

I1f, for some other application, the value of AX is needed with
respect to the mean equinox of date instead of to a fixed reference
frame, the constant term 3548.193 should be replaced by 3548.330.
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Daily variation, in arcseconds, of the geocentric longitude
of the Sun in a fixed reference frame

The time Tt is measured from J2000.0
(JDE 2451 545.0) in Julian millenia.

The arguments of the sines are in degrees.

AX = 3548.193

+ 118.568 sin ( 87.5287 + 359993.7286 1)
2.476 sin ( 85.0561 + 719987.4571 1)
.376 sin ( 27.8502 + 4452671.1152 1)
.119 sin ( 73.1375 + 450368.8564 1)
.114 sin (337.2264 + 329644.6718 1)
.086 sin (222.5400 + 659289.3436 1)
.078 sin (162.8136 + 9224659.7915 1)
.054 sin ( 82.5823 + 1079981.1857 1)
.052 sin (171.5189 + 225184.4282 1)
.034 sin ( 30.3214 + 4092677.3866 1)
.033 sin (119.8105 + 337181.4711 1)
.023 sin (247.5418 + 299295.6151 1)
.023 sin (325.1526 + 315559.5560 1)
.021 sin (155.1241 + 675553.2846 T)
.311 T sin (333.4515 + 359993.7286 T)
.305 1 sin (330.9814 + 719987.4571 1)
.010 T sin (328.5170 + 1079981.1857 1)
.309 12 sin (241.4518 + 359993.7286 1)
0.021 T2 sin (205.0482 + 719987.4571 1)
0.004 T2 sin (297.8610 + 4452671.1152 1)
0.010 T3 sin (154.7066 + 359993.7286 1)

+ ++ + A+ A+
O OO N OO0 OO

The periodic terms where T has the coefficient 359993.7,
719987, or 1079981, are due to the eccentricity of the
Earth's orbit. The terms with 4452671, 9224660, or
4092 677 are due to the action of the Moon; those with
450369, 225184, 315560, or 675553 are due to Venus;
those with 329645, 659 289, or 299296 are due to Ju-
piter; finally, the term with 337 181 is due to the
action of Mars.
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Example 24.b — Let us again, as in Example 24.a, calculate the
position of the Sun for 1992 October 13.0 TD =
JDE 2448908.5.

Using from Appendix II the data for the Earth, we find by the
method explained in Chapter 31,

L = -43.63484796 radians = -2500.092628 degrees
+19.907 372 degrees
= ~0.00000312 radian = -0°000179 = -0".644
= 0.997 607 75
Whence
@ = L +180° = 199°.907372
B = 40644
Converting to the FK5 system, we find
A* = 200°01 A@ = ~0".09033 = -0°.000 025 AB = -0".023
whence
@ = 199°.907 347 = 199°54'26". 449 B = +0".62

The nutation is calculated by means of the method described in
Chapter 21. We find

Ay = +15".908 Ae = -0".308 true € = 23°%440 1443
and by (24.10) the correction for aberration is -20'.539.
Hence, the Sun's apparent longitude is
A = @ +15'.908 - 20".539 = 199°54'21".818
Then, by (12.3) and (12.4),

13h13m30s, 763
-7°47'01™.94

= 198°.378178
§ = -7°.783871

Resuming, the final results are

@ = 199°54'26™45 R = 0.99760775
A = 199°54'21".82 = 13h13m308,763
B = +0".62 8§ = ~7°47'01".94

Compare these results with the correct values mentioned at the
end of Example 24.a. Our results are now much better than those
obtained with the low-accuracy method.

1. P. Bretagnon and J.-L. Simon, Planetary Programs and Tables
from -4000 to +2800 (Willmann-Bell, Richmond, 1986).






Chapter 25

Rectangular Coordinates of the Sun

The rectangular geocentric equatorial coordinates X, Y, Z of the Sun
are needed for the calculation of an ephemeris of a minor planet
(see Chapter 32) or a comet. The origin of these coordinates is the
center of the Earth. The X-axis is directed towards the vernal equi-
nox (longitude 0°); the Y-axis lies in the plane of the equator too
and is directed towards longitude 90°, while the Z-axis is directed
towards the north celestial pole.

The values of X, Y, Z are given for each day at OB TD in the
great astronomical almanacs; they are expressed in astronomical
units. Generally they are not referred to the mean equator and mean
equinox of the date, but to a standard equinox, for instance that
of J2000.0.

Reference to the mean equinox of the date

Calculate the geometric coordinates of the Sun by means of the
method ('higher accuracy') described in Chapter 24, that is, with
the corrections (24.9) for reduction to the FK5 system, but without
the corrections for nutation and aberration.

If ® and R are the geometric longitude and latitude of the Sun,
and R its radius vector in astronomical units, then the required
rectangular coordinates of the Sun, referred to the mean equator and
equinox of the date, are given by

X = Rcos f cos @
Y = R(cos B sin ® cos € - sin B sin €) (25.1)
Z2 = R (cos B sin @ sin € + sin B cos &)

where € is the mean obliquity of the ecliptic given by (21.2).

Since the Sun's latitude, referred to the ecliptic of the date,
never exceeds 1.2 arcsecond, one may safely put cos 8 =1 in the
formulae (25.1).

159
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Example 25.a — TFor 1992 October 13.0 TD = JDE 2448908.5, we have
found in Example 24.b :

© = 199°.907 347 B = +0'.62
R = 0.997607 75
For the given instant, formula (21.2) gives
e = 23°26'24".827 = 23°.4402297
whence, by (25.1),

X = -0.9379952
-0.3116544
= ~0.1351215

N R
o

Reference to the standard equinox J2000.0

As explained in Chapter 31, calculate for the given instant the
Earth's heliocentric longitude L and latitude B referred to the
equinox of J2000.0, and the radius vector. For this purpose, use
from Appendix II the data for the Earth, with the following excep-
tions :

— in section L1, replace the first value of the coefficient 'A', na-
mely 628 331966 747, by 628307 584999 ;

— sections L2, L3 and L4 should be replaced by those given in Table
25.A

~ drop section L5;

— for the calculation of the latitude B, use section BO from Appen-
dix II, but sections Bl to B4 from Table 25.A.

Obtain the geocentric longitude @ of the Sun by adding 180° (or
m radians) to L, and the Sun's latitude B by changing the sign
of B. That is,

@ = L+ 180°, B = -B

[At this stage, if only the Sun's geometric longitude referred to
the standard equinox of J2000.0 is required, subtract 0".09033
from @ in order to convert the longitude from the VSOP dynamical
equinox to the FK5 equinox, as in (24.9). — Otherwise, do not
perform this correction and proceed as follows.]

Calculate
X = Rcos B cos @
Y = R cos B sin @ (25.2)
Z = R sin B



25.

Rectangular Coordinates of the Sun

TABLE 25.A
EARTH J2000.0 (some terms only)
No A B C
L2 1 8722 1.0725% 6283.0758
2 991 3.1416 0
3 295 0 437 12566 152
4 27 0 05 3.52
5 16 519 26 30
6 16 3.69 155.42
7 9 0.30 18849.23
8 9 2 06 77713.77
9 7 0.83 775.52
10 S 4 66 1577 34
11 4 1.03 7.11
12 4 3.44 5573.14
13 3 514 796 30
14 3 6.05 5507.55
15 3 119 242 73
16 3 612 529.69
17 3 0.30 398 15
18 3 2 28 553 57
19 2 4.38 5223.69
20 2 3.75 0.98
L3 1 289 5.842 6283,076
2 21 6.05 12566.15
3 3 5.20 155 42
4 3 3.14 0
s 1 4,72 3 52
6 1 5 97 242.73
7 1 554 18849 .23
L4 8 4.14 6283.08
1 3.28 12566.15
Bl 1 227778 3.413 766 6283.075850
2 3806 3.3706 12566.1517
3 3620 0 0
4 72 3.33 18849.23
5 8 3.89 5507.55
6 8 1.79 5223.69
7 6 5.20 2352.87
B2 1 9721 5.1519 6283.,07585
2 233 3.1416 0
3 134 0.644 12566.152
4 7 1.07 18849.23
B3 1 276 0.595 6283.076
2 17 3.14 0
3 4 0.12 12566.15
B4 1 6 2.27 6283.08
2 1 0 0
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(Of course, these expressions are equivalent to X = -R cos B cos L,
Y=-Rcos B sin L, and 2z = -R sin B, respectively.)

The rectangular coordinates X, Y, Z, calculated by means of
(25.2), are still defined in the ecliptical dynamical reference
frame (VSOP) of J2000.0. They can be transformed into the equato-
rial FK5 J2000.0 reference frame as follows:

X, = X + 0.000000440360y - 0.000000190919z

vy, = -0.000000479966x + 0.917482137087y - 0.397 776 982902 z

2z, = 0.397 776982902y + 0.9174821370872
(25.3)

Reference to the mean equinox of B1950.0

Proceed as above for J2000.0, except that expressions (25.3)
should be replaced by the following ones.

X, = 0.999925702634% + 0.012189716217Y + 0.0000111340162
Y, = -0.011179418036x + 0.917413998946Yy - 0.397 7770418852
Z, = —0.004859003787x + 0.397747363646Y + 0.9174821114282

It should be noted that the rectangular coordinates obtained in
this manner are referred to the mean equator and equinox of the
epoch B1950.0 in the FK5 system, not in the FK4 system which is
affected by the 'equinox error' as mentioned in Chapter 20.

Reference to any other mean equinox

First, calculate the Sun's rectangular equatorial coordinates X,,
Y., Z, referred to the standard equinox of J2000.0 as explained
above, that is, by means of the formulae (25.2) and (25.3).

Then, if JD is the Julian Day corresponding to the epoch of the
given equinox, calculate

JD ~ 2451545.0

t = 36525

and then the angles g, z and 6 from (20.3).

Then the required rectangular coordinates of the Sun are given by

]

X' X, Xo + Y, Y, + 2,72,

Y= X X, ¥ Y Yo+ 2, %

Z' = XX, + Y, ¥, + Z,Zo
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Xy = cos ¢ cos
X, = sin ¢ cos
12

X, = cos ¢ sin
Yx = -cos { sin
Y = cos cos
y g

Y, = -sin ¢ sin
Zx = =—cos z sin
2. = -sin z sin
12

Z, = cos 0

z

z

cos 6 — sin ¢ sin z

+

cos ¢ sinz cos §

sin ¢ cos z cos ©

sin ¢ sin z cos ©

It should be noted that the coordinates x', ¥', 2' are refer-
red to the mean equinox of an epoch which differs from the date for
which the values are calculated.

Example 25.b — TFor 1992 October 13.0 TD = JDE 2448 908.5, calcu-
late the equatorial rectangular coordinates of
the Sun referred to

(a) the standard equinox of J2000.0;
(b) that of B1950.0;
(c) the mean equinox of J2044.0.

We find successively

-0.007 218 343 6003

~43.633 08803 radians

+0.00000386 radian

= -2499.991 791 degrees
= +20.008 209 degrees

+0°.000221 = +0'.796

0.997 60775 (as in Example 24.b, of course)

X
Y
Z

-0.93739575 ecliptic,
-0.341336 25 dynamical equinox,
-0.000003 85 J2000.0

o= —0.937 39590 equatorial

X
Y,= -0.31316793 FKX5 frame,
Z

o= —0.135779 24 J2000.0
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The correct values, obtained by means of an accurate calculation
using the complete VSOP87 theory, are -0.93739707, -0.31316725
and -0.135778 42, respectively.

X,= —0.941 487 equatorial,
Y, = -0.302 666 FK5 system,
Z,= -0.131214 B1950.0 frame

JD = 2467616.0 (since the epoch J2044.0 is 44 x 365.25 days
later than J2000.0)

t = +0.440000

¢ = +1014".7959 = +0°.281 8878

z = +1014'.9494 = +0°.281 9304

6 = + 881".8106 = +0°.2449474
X, = +0.9999424 Y, = -0.0098403 z, = -0.0042751
Xy = +0.009 8403 Yy = +0.9999516 z, = -0.0000210
X, = +0.0042751 Y, = -0.0000210 Z, = +0.9999909

x’' = -0.933680 equatorial,

Y' -0.322374 FK5 system,
z2' = -0.139779 J2044.0 frame




Chapter 26

Equinoxes and Solstices

The times of the equinoxes and solstices are the instants when the
apparent geocentric longitude of the Sun (that is, calculated by in-
cluding the effects of aberration and nutation) is a multiple of 90
degrees. (Because the latitude of the Sun is not exactly zero, the
declination of the Sun is not exactly zero at the instant of an
equinox.)

Approximate times can be obtained as follows. First, find the in-
stant of the 'mean' equinox or solstice, using the relevant expres-
sion in Table 26.A or in Table 26.B. Note that Table 26.A should be
used for the years -1000 to +1000 only, and Table 26.B for the years
+1000 to +3000. In fact, Table 26.A may be used for several centu-
ries before the year -1000, and Table 26.B for several centuries af-
ter +3000; the errors will still be quite small. In the formula for
Y, given at the top of each table, 'year' is an integer; other va-
lues for 'year' would give meaningless results'!

Then find

JDE, - 2451 545.0
36525

35999°,373 T - 2°.47
1 + 0.0334 cos W + 0.0007 cos 2w

AX

u

Calculate the sum S of the 24 periodic terms given in Table 26.C.
Each of these terms is of the form A cos (B + CT), and the argument
of each cosine is given in degrees. In other words,

S = 485 cos (324°.96 + 1934°.136 T)
+203 cos (337°.23 + 32964°.467 T)
+ ...

The required time, expressed as a Julian Ephemeris Day (hence, in
Dynamical Time), is then
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TABLE 26.C
S = Tacos(B+crT) B and ¢ in degrees!

A B C A B C
485 324.96 1934,136 45 247.54 29929.562
203 337.23 32964.467 44 325.15 31555.956
199 342.08 20.186 29 60.93 4443 .417
182 27.85 445267.112 18 155.12 67555.328
156 73.14 45036.886 17 288.79 4562.452
136 171.52 22518.443 16 198.04 62894.029

77 222.54 65928.934 14 199.76 31436.921

74 296.72 3034.906 12 95.39 14577.848

70 243.58 9037.513 12 287.11 31931.756

58 119.81 33718.147 12 320.81 34777.259

52 297.17 150.678 9 227.73 1222.114

50 21.02 2281.226 8 15.45 16859.074

JDE = JDE, + 2:00001 S 4 oo

AX

This final JDE can be converted into the ordinary calendar date

by means of the method described in Chapter 7.

expressed in Dynamical Time.

The result will be

For the years 1951-2050, the accuracy of this method is seen

from Table 26.D.

TABLE 26.D
Number of Number of Largest
errors errors error

< 20 sec. < 40 sec. (seconds)
March equinox 76 97 51
June solstice 80 100 39
September equinox 78 99 44
December solstice 68 99 41
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Example 26.a =~ Find the time of the June solstice of A.D. 1962.

We find successively

Yy = -0.038
JDE, = 2437 837.38589

T = -0.375294021
Al = 0.9681
S = +635
_ 0.00635 _
JDE = 2437 837.38589 + ~0.9681 - 2437 837.39245

which corresponds to 1962 June 21 at 21B25m08s TD.

The correct instant, as calculated with the complete VSOP87 theo-
ry, is 21b24m428 TD,

Of course, higher accuracy can be obtained by actually calcula-
ting the value of the apparent longitude of the Sun for two or three
instants, and then finding by interpolation the time when that lon-
gitude is exactly 0°, or 90°, or 180°, or 270°.

One should keep in mind that the motion of the Sun along the ec-
liptic is only 3548 arcseconds per day approximately. Hence, an error
of 1" in the calculated longitude of the Sun results in an error of
approximately 24 seconds in the times of the equinoxes or solstices.

Alternatively, one may start from any approximate time. The value
obtained from Table 26.A or 26.B is more than sufficient. For that
instant, calculate the Sun's apparent longitude A\ as explained in
Chapter 24, including the corrections for reduction to the FK5 sys-
tem, for aberration and for nutation. Then the correction to the
assumed time, in days, is given by

+58 sin (k.90° - X) (26.1)

where

k = 0 for the March equinox,
1 for the June solstice,
2 for the September equinox,
3 for the December solstice.

The calculation is then repeated until the new correction is very
small or, equivalently, until the new value for the Sun's apparent
longitude is exactly k.90°.

Example 26.b — Let us again calculate the instant of the June
solstice in the year 1962.

In Example 26.a, we found that the 'mean' solstice took place at
JDE, = 2437 837.38589 (from Table 26.A). Let us start from this ap-
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proximate time, and calculate the Sun's apparent longitude for this
instant, using the 'higher accuracy' procedure (Chapter 24). We find

L = -234.048 59559 radians = 270°.003272

R = 1.0163018

Nutation in longitude : Ay = -12'.965 (Chapter 22)

FK5 correction : - 009033 (formula (24.9))
aberration : -20". 161 (formula (24.10))

Apparent longitude of the Sun:

A = 270°.003 272 - 180° - 12".965 - 0'.09033 - 20".161
A = 89°.994 045

Formula (26.1) then gives the correction to the assumed value of
JDE, :

correction = +58 sin (80° - A) = +0.00603
and hence the corrected time is
JDE = 2437837.38589 + 0.00603 = 2437837.39192
Repeating the calculation for this new instant, we find
A = 89°.999 797,

resulting in the correction +0.00021 day. This gives the improved
instant JDE = 2437 837.39213.

A final calculation, performed for this new instant, yields
A = 89°.999 998
and a correction smaller than 0.000 005 day.

Hence, the final instant is JDE = 2437 837.39213, which corres-
ponds to 1962 June 21 at 21P24m40S TD.

[This differs by only two seconds from the correct time which is
mentioned at the end of Example 26.a.]

In 1962, the difference TD - UT was 34 seconds (see Table 9.A),
s0 our result may be rounded to 21b24m UT.

Table 26.E gives the times of the equinoxes and solstices for the
years 1991 to 2000, to the nearest second of time.

Table 26.F gives the durations of the four astronomical seasons
for some epochs. About the year -4080, the Earth was in perihelion
at the beginning of the autumn; then the summer had the same dura-
tion as the autumn, and the winter the same duration as the spring.
In A.D. 1246, the Earth was in perihelion at the time of the winter
solstice; then the spring had the same duration as the summer, and
the autumn the same duration as the winter. Since the year +1246,
the winter is the shortest season; it will reach its minimum value
by about A.D. 3500, and remain the shortest season till about A.D.
6427, when the Earth will be in perihelion at the March equinox.
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TABLE 26.E

Equinoxes and Solstices, 1991-2000, calculated by means of
the complete VSOP87 theory. Instants in Dynamical Time.

Year March equinox June solstice Sept. equinox Dec. solstice

d h m s d h m s d h m s d h m s

1991 | 21 30254 |21 211946 |23 124904 |22 8 54 38
1992 | 20 849 02 | 21 31508 |22 184346 (21 14 44 14
1993 | 20 14 41 38 | 21 900 44 |23 02329 |21 20 26 49
1994 | 20 2029 01 |21 14 48 33 23 6 20 14 |22 2 23 44
1995 | 21 21527 |21 203524 (23 121401 |22 8 17 50

1996 | 20 8 04 07 | 21 22446 |22 180108 (21 14 06 56
1997 | 20 13 55 42 | 21 8 2059 |22 235649 |21 20 08 05
1998 | 20 195535 | 21 14 03 38 |23 5 38 15 |22 157 31
1999 | 21 14653 |21 1950 11 |23 113234 |22 7 44 52
2000 | 20 73619 |21 148 46 |22 17 28 40 |21 13 38 30

TABLE 26.F

Duration of the astronomical seasons, in days

Year Spring Summer Autumn Winter
-4000 93.54 89.18 89.08 93.43
-3500 93.82 89.53 88.82 93.07
-3000 94.04 89.92 88.62 92.67
-2500 94.19 90.33 88.48 92.24
-2000 94.28 90.76 88.40 91.81
-1500 94.30 91.20 88.38 91.37
=1000 94.25 91.63 88.42 90.94
- 500 94.14 92.05 88.53 90.52

0 93.96 92.45 88.70 90.14
+ 500 93.73 92.82 88.92 89.78

1000 93.44 93.15 89.18 89.47

1500 93.12 93.42 89.50 89.20

2000 92.76 93.65 89.84 88.99

2500 92.37 93.81 90.22 88.84

3000 91.97 93.92 90.61 88.74

3500 91.57 93.96 91.01 88.71

4000 91.17 93.93 91.40 88.73

4500 90.79 93.84 91.79 88.82

5000 90.44 93.70 92.15 88.96

5500 90.11 93.50 92.49 89.14

6000 89.82 93.25 92.79 89.38

6500 89.58 92.97 93.04 89.65




Chapter 27

Equation of Time

Due to the eccentricity of its orbit, and to a much less degree due
to the perturbations by the Moon and the planets, the Earth's helio-
centric longitude does not vary uniformly. It follows that the Sun
appears to describe the ecliptic at a non-uniform rate. Due to this,
and also to the fact that the Sun is moving in the ecliptic and not
along the celestial equator, its right ascension does not increase
uniformly.

Consider a first fictitious Sun travelling along the ecliptic
with a constant speed and coinciding with the true Sun at the peri-
gee and apogee (when the Earth is in perihelion and aphelion, res-
pectively). Then consider a second fictitious Sun travelling along
the celestial equator at a constant speed and coinciding with the
first fictitious Sun at the equinoxes. This second fictitious Sun is
the mean Sun, and by definition its right ascension increases at a
uniform rate. [That is, there are no periodic terms, but its expres-
sion contains small secular terms in T2, T2, ...].

When the mean Sun crosses the observer's meridian, it is mean
noon there. True noon is the instant when the true Sun crosses the
meridian. The equation of time is the difference between apparent
and mean time; or, in other words, it is the difference between the
hour angles of the true Sun and the mean Sun.

Defined in this manner, the equation of time &, at a given in-
stant, is given by

E = L, - 0°0057183 - a + Ay . cos € (27.1)

In this formula, L, is the Sun's mean longitude. According to the
VSOP87 theory (see Chapter 31) we have, in degrees,

L, = 280.466 4567 + 360007.6982779 t
+ 0.03032028 t% + T3/49931 (27.2)
- T4#/15299 - 1t5/1988000
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where T is the time measured in Julian millennia (365250 ephemeris
days) from J2000.0 = JDE 2451545.0., L, should be reduced to less
than 360° by adding or subtracting a convenient multiple of 360°.

In the French almanacs and in older textbooks, the equation of
time is defined with opposite sign, hence being equal to mean time
minus apparent time.

In formula (27.1), the constant 0°0057183 is the sum of the mean
value of the aberration in longitude (-20".49552) and the correction
for reduction to the FK5 system (-0".09033); o is the apparent
right ascension of the Sun, calculated by taking into account the
aberration and the nutation. The quantity Ay .cos €, where AY is
the nutation in longitude and € the obliquity of the ecliptic, is
needed to refer the apparent right ascension of the Sun to the mean
equinox of the date, as is the mean longitude IL,.

In formula (27.1), the quantities L,, o and Ay should be ex-
pressed in degrees. Then the equation of time E will be expressed
in degrees tooj it can be converted to minutes of time by multipli-
cation by 4.

The equation of time E can be positive or negative. If E > 0,
the true Sun crosses the observer's meridian before the mean Sun.

The equation of time is always less than 20 minutes in absolute
value., If IEI appears to be too large, add 24 hours to or subtract
it from your result.

Example 27.a — Find the equation of time on 1992 October 13 at 0b
Dynamical Time.

This date corresponds to JDE = 2448908.5, from which we deduce

_ JDE - 2451545.0 _ _
T = o5 550 = -0.007 218 343 600

L, = -2318°.192807 = +201°.807 193

For the same instant we have, from Example 24.b,

o 198°.378 178
Ay +15".908 = +0°.004 419
€ = 23°440 1443

whence, by formula (27.1),

E = +3°427351 = +13.70940 minutes = +13%4256

Alternatively, the equation of time can be obtained, with some-
what less accuracy, by means of the following formula given by
Smart 1] :
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E = y sin 2L, - 2e sin M + 4ey sin M cos 2L,

(27.3)
-—é—-gz sin 4L, - %ez sin 2M
where e
y = tanziz s € being the obliquity of the ecliptic,
L, = Sun's mean longitude,
e = eccentricity of the Earth's orbit,
M = Sun's mean anomaly.

The values of €, L,, e and M can be found by means of formulae
(21.2), (27.2) or (24.2), (24.4), and (24.3), respectively.

The value of E given by formula (27.3) is expressed in radians.
The result may be converted into degrees, and then into hours and
decimals by division by 15.

Example 27.b — Find, once again, the value of the equation of
time on 1992 October 13.0 TD = JDE 2448908.5.

We find successively

= -0.072183436 e = 0.016711651
£ = 23°.44023 M = 278°,99396
L, = 201°.80720 y = 0.0430381

Formula (27.3) then gives E = +0.059 825557 radian
+3.427 752 degrees
+13 minutes 42.7 seconds

"

The curve representing the variation of the equation of time du-
ring the year is well-known and can be found in many astronomy books.
Presently, this curve has a deep minimum near February 11, a high
maximum near November 3, and a secondary maximum and minimum about
May 14 and July 26, respectively.

However, the curve of the equation of time is gradually changing
in the course of the centuries, because the obliquity of the eclip-
tic, the eccentricity of the Earth's orbit, and the longitude of the
perihelion of this orbit are all slowly changing. The figure on the
next page shows the curve of the equation of time at intervals of
1000 years, from 3000 B.C. to A.D. 4000. On the vertical scale, the
tics are given at intervals of five minutes of time; the horizontal
line represents the value E = zero. The tics on this horizontal line
divide the year in four periods of three months each, beginning from
January 1 at left. We see, for instance, that the minimum of Febru-
ary will be less deep in the future.

Between A.D. 1600 and 2100, the extreme values of the equation of



174 ASTRONOMICAL ALGORITHMS

-3000 - 2000 K

—T

VAN /\
HENAN
M

1 A

N

VA

o

2000

Tﬁi

The curve of the equation of time, from -3000 to +4000



27. Equation of Time

175

time vary as shown in Table 27.A. These are 'mean' values: the cal-
culation is based on a non-perturbed elliptical motion of the Earth,

and the nutation has not been taken into account.

In A.D. 1246, when the Sun's perigee coincided with the winter
solstice, the curve representing the annual variation of the equa-
tion of time was exactly symmetrical with respect to the zero-line:
the minimum of February was exactly as deep as the height of the No-
vember maximum; and the smaller May maximum was exactly as high as

the value of the July minimum — see the last line of the Table.

The extreme values of the equation of time in modern times

TABLE

27.A

Minimum Maximum Minimum Maximum
Year of of of of
February May July November
m s m s m s m s
1600 -15 01 +4 19 -5 40 +16 03
1700 -14 50 +4 09 -5 53 +16 09
1800 -14 38 +3 59 -6 05 +16 15
1900 -14 27 +3 50 -6 18 +16 20
2000 -14 15 +3 41 -6 31 +16 25
2100 -14 03 +3 32 -6 44 +16 30
1246 -15 39 +4 58 -4 58 +15 39
Reference

1. W.M. Smart, Text-Book on Spherical Astronomy; Cambridge (Engl.),
University Press (1956); page 149.






Chapter 28

Ephemeris for Physical Observations
of the Sun

The formulae given in this Chapter are based on the elements deter-
mined by Carrington (1863), which have been in use for many years.
For a given instant, the required quantities are:

the position angle of the northern extremity of the axis of
rotation, measured eastwards from the North Point of the solar
disk ;

the heliographic latitude of the center of the solar disk;

P

o

[

the heliographic longitude of the same point.

o

Although position angles are generally counted from 0° to 360°
(this is the case for the Moon, the planets, double stars, etc.),
in the case of the Sun it is customary to keep P, in absolute value,
less than 90°, and to assign to it a plus or a minus sign: P is
positive when the northern extremity of the rotation axis of the
Sun is tilted towards the East, negative if towards the West. Ce-
lestial and solar north can differ by up to 26 degrees. P reaches
a minimum of -26°3 about April 7, a maximum of +26°3 about October
11, and is zero near January 5 and July 7.

B, represents the tilt of the Sun's north pole toward (+) or away
(-) from Earth; it is zero about June 6 and December 7, and reaches
maximum value about March 6 (-7°.25) and September 8 (+7°.25).

L, decreases by about 13.2 degrees per day. The mean synodic pe-
riod is 27.2752 days. The beginning of each 'synodic rotation' is
the instant at which L, passes through 0°, Rotation No. 1 commenced
on 1853 November G.

Let JD be the Julian Ephemeris Day, which can be calculated by
means of the method described in Chapter 7. If the given instant is
in Universal Time, add to JD the value AT = TD - UT expressed in
days (see Chapter 9). If AT is expressed in seconds of time, the

177
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correction to JD will be +AT/86400.

Then calculate the following quantities:

_ _ 360°
6 = (JD - 2398220) X oz

=7°25 = 7°15'

e . JD - 2396 758
K = 73°.6667 + 1°.3958333 -~ 225

where I is the inclination of the solar equator on the ecliptic,
and K is the longitude of the ascending node of the solar equator
on the ecliptic. In the formula for 6, 25.38 is the Sun's sidereal
period of rotation in days. This value has been fixed conventionally
by Carrington. It defines the zero meridian of the heliographic lon-
gitudes and therefore must be treated as exact.

Calculate the apparent longitude A of the Sun (including the ef-
fect of aberration, but not that of nutation) by the method descri-
bed in Chapter 24, and the obliquity of the ecliptic & (including
the effect of nutation) as explained in Chapter 21. Let X\’ be A
corrected for the nutation in longitude.

Then calculate the angles x and y by means of

tan x = -cos A’ tan €
tan y = -cos (A -K) tan I

where both x and y should be taken between -90° and +90°. Then the
required quantities P, B, and L, are found as follows :
P =x+ty
sin B,= sin (A -K) sin I

-sin (A~ K) cos I
-~ cos (A - K)

= tan (A - K) cos I

tan 7N

n being in the same quadrant as X - K * 180°,

L, = n-6, to be reduced to the interval 0- 360 degrees.

Example 28.a — Calculate P, B, and L, for 1992 October 13 at Oh
Universal Time = JD 2448 G08.5.

We will use the value AT = 459 seconds = +0.000 68 day. Conse-
quently the corrected JD, or Julian Ephemeris Day, is 2448 908.50068
and we find successively

0 = 718985°.8252 = 65°.8252
I =7°25
K = 75°.6597

From Chapters 24 and 21 :
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L (Earth) = -43.634 836 22 radians = +19° 908 045

R = 0.997608
AY = +15'.908 = +0°.004 419
€ = 23°440 144
n
correction for aberration = -~ i}%ﬁ = =0°,005705

whence

A L + 180° ~ 0°,005705 = 199°.902 340
A= X + Ay = 199°.906 759

tan x = +0.407 664 x = +22°.1790
tan y = +0.071 584 y = + 4°.0945
p = 26°.27
sin B, = +0.104 324 B, = +5°.99
_ -0.820053 _ _zco
tan n = 30.562690 n = -55°5431
L, = —121°.3683 = 238°.63

As mentioned above, a solar 'synodic rotation' begins when L, is
equal to 0°. An approximate time for the beginning of Carrington's
synodic rotation No. C is given by

Julian Ephemeris Day = 2398140.2270 + 27.2752316c¢C (28.1)

where, of course, C is an integer. The instant so obtained will not
be more than 0.16 day in error.

However, the time obtained from the formula above can be correc-
ted as follows. Calculate the angle M, in degrees, from

M = 281.96 + 26.882476C
Then the correction in days is

+0.1454 sin M
-0.0085 sin 2M (28.2)
-0.0141 cos 2M

Between the years 1850 and 2100, the resulting time will be less
than 0.002 day in error.

Of course, a correct value for the time of the beginning of a
synodic rotation can be obtained by calculating L, for two instants
near the time given by the formula above, and then by performing an
inverse interpolation to find when L, is zero.
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Example 28.b — Find the instant of the beginning of solar rota-
tion No. 1699.

For ¢ = 1699, formula (28.1) gives JDE = 2444 480.8455.

We further find M = 45955°.287 = 235°.287, and the correction as
given by (28.2) is -0,1225.

To convert from Dynamical Time to Universal Time, there is a fur-
ther correction of -0.0006 day (in 1980, the value of AT = TD-UT
was 51 seconds).

Hence, the final instant is
JD = 2444 480.8455 ~ 0.1225 ~ 0.0006 = 2444480.7224
which corresponds to 1980 August 29.22.

The Astronomical Ephemeris for 1980, page 359, gives the same
value.

It is customary to give the times of the commencement of the
Sun's synodic rotations to the nearest 0.01 day, hence in days and
decimals, not in hours and minutes.



Chapter 29

Equation of Kepler

There are several methods for calculating the position of a body
(planet, minor planet, or periodic comet) on its elliptical orbit
around the Sun at a given instant :

— by numerical integration, a subject which is outside the scope
of this book;

— obtaining the body's heliocentric ccordinates (longitude, lati-
tude, radius vector) by calculating the sum of periodic terms,
as will be explained in Chapter 31;

— from the orbital elements of the body, as explained in Chapter 32

In the latter case, we need to find the true anomaly of the ob-
ject. This can be achieved either by solving Kepler's equation or,
when the orbital eccentricity is not too large, by using series ex-
pressions (see 'The Equation of the Center' in Chapter 32).

Figure 1
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In Figure 1 we represent one half of an elliptical orbit (PKA).
The Sun is situated in the focus S; the other, empty focus of the
ellipse is F. The straight line AP is the major axis of the orbit.
The center C of the ellipse is exactly half-way between the peri-
helion P and the aphelion A, as well as half-way between the foci
F and S.

Suppose that, at a given instant, the moving body is at K. The
distance SK is the radius vector of the body at that instant; this
distance r is expressed in astronomical units. The true anomaly (v)
at the same instant is the angle between the directions SP and SK;
it is the angle over which the object moved, as seen from the Sun,
since the previous passage through the perihelion P.

The semimajor axis, CP in Figure 1, is generally designated by a
and is expressed in astronomical units. By definition, the eccentri-
city e of the orbit is equal to the ratio of the distances CS and
CP, or e = CS/CP. For an ellipse, e is between 0 and 1. The peri-
helion and aphelion distances are designated by g and Q, respecti-
vely. In the perihelion, v =0° and r =g, while in the aphelion
we have v = 180° and r = Q. It follows that

distance CS =

a
distance SP = ¢ perihelion distance
distance SA = Q = a(l+e) = aphelion distance
distance PA = 2

Y

~~

—
I

4]

S
|

Let us now consider (Figure 2) a fictitious planet or comet K’
describing around the Sun a circular orbit, hence with a constant
velocity, with the same period as the real planet or comet K.
Moreover, let us suppose that this fictitious body is at P’, on the
line SP, at the instant when the real body is at the perihelion P.
Some time later, when the true body is at K, the fictitious body is
at K’. As we have seen, the angle v = angle PSK is the true anoma-
ly of the body (at the given instant). The angle PSK’ at the same
instant is called the mean anomaly and is generally designated by M.

In other words, the mean anomaly is the angular distance from pe-
rihelion which the planet would have if it moved around the Sun with
a constant angular velocity.

By definition, the angle M increases linearly (uniformly) with
time. The value of M at a given time is easily found, for M = 0°
when the planet is at perihelion, and it increases by exactly 360°
in the c_urse of one complete revolution of the planet.

The vproblem consists in finding the true anomaly v when the
mean an 1aly M and the orbital eccentricity e are known. Unless
use is r.ode of series expressions such as those given in Chapter 32,
one has o solve Kepler's equation.

In this connection, it is necessary to introduce an auxiliary
anele E, the eccentric anomaly, whose geometric definition is given
in ‘gure 1. The exterior, dashed circle has diameter AP. We draw
KQ - :.:endicularly to AP. The angle PCQ is the eccentric anomaly.
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When the planet
is at perihelion,
the angles v, E and
M are all zero. Near
the perihelion, the
true planet moves at
a greater speed than
the mean, fictitious
planet. Therefore,
between perihelion
and aphelion, when
the planet moves
away from the Sun,
we have v > M and,
because E is always
between v and M, we
then have

0° <M <E<v<180°.

In the aphelion,
v=E=M=180°, and
after aphelion pas-
sage, on its way
back to perihelion,
the true planet re-
mains behind the
mean planet.

Figure 2

When E is known, v can be obtained from

il

lte anZ (29.1)

tan 1-e 2

<

while the radius vector can be calculated from one of the following
expressions :

r = af(l-ecosk) (29.2)
_ a1 -e?

% T+¥ecosv (29.3)

r = g l+e) (29.4)

l+ecosv
But let us now consider the problem of finding the eccentric ano-
maly E.

The equation of Kepler is
E = M+ esink (29.5)

This equation must be solved for E. It is, however, a transcen-
dental equation which cannot be solved directly. We will describe
three iteration methods for finding E, and finally give a formula
which yields an approximate result.
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First Method

In formula (29.5) the angles M and E should be expressed in ra-
dians. Hence the calculation should be performed in 'radian mode',
which is the case for many programming languages. If the calculation
is made in 'degree mode', then in (29.5) one should multiply e by
180/ 7w, the factor for converting radians into degrees. Let e, be
the thus 'modified' eccentricity. Kepler's equation is then

E =M+ e, sin E (29.6)
and now we can calculate with ordinary degrees.

To solve equation (29.6), give an approximate value to E in the
right side of the formula. Then the formula will give a better ap-
proximation for E. This is repeated until the required accuracy is
obtained; this process can be performed automatically in a computer
program. For the first approximation, we may use E = M.

We thus have

Ey = M

Ey = M+ e sin B,

E, = M+ e sin £,

Ey = M+ e sin E,
etc.

Ey, Ey, E3, etc. are successive and better approximations for the
eccentric anomaly E.

Example 29.a — Solve the equation of Kepler for e = 0.100 and
M =5°, to an accuracy of 0.000001 degree.

We find
e, = 0.100 x 180/m = 5°.72957795,

and the equation of Kepler becomes
E = 5+ 5,72957795 sin E

where all quantities are in degrees. Starting with E =M= 5°, we
obtain successively

.499 366
.545 093
.554 042
.554 535
.554 584
.554 589
.554 589

[O; O RV I, RV, R, |

Hence, the required value is E = 5°554589.
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This method is very simple and does always converge. There will
be no problems when e is small. However, the number of required
iterations is generally increasing with e. For example, for e =
0.990 and M = 2°, the successive values of the iteration procedure
are as follows :

2.000 000 15.168 909 24.924 579 29.813 009
3.979598 16.842 404 25.904 408 30.200 940
5.936 635 18.434883 26.780 556 30.533515
7.866758 19.937 269 27.557 863 30.817 592
9.763 644 21.341978 28.242 483

11.619294 22.643 349 28.841 471

13.424 417 23.837929 29.362 399

After the 50th iteration, the result (32°345452) still differs
from the correct result (32.361007) by more than 0.01 degree.

Figure 3, due to the Belgian calculator Edwin Goffin, is a three-
dimensional representation of the number of iterations needed to ob-
tain an accuracy of 107 degree, as a function of the orbital eccen-
tricity and the mean anomaly. We see that the number of required
iterations becomes large when the eccentricity approaches 1 and
when the mean anomaly is close to 0° or to 180°. [Note that 107°
degree (4 millionth of an arcsecond) is an absurdly high accuracy;
it has been retained here merely as a mathematical exercise.]

At the bottom of the drawing we note a horizontal straight 'val-
ley'. This valley extends from the point e =0, M = 90° to the point
e=1, M=32°2', (This latter value is equal to 7/2 - 1 radians.)
This means that, for any eccentricity e, there is a value M, of the
mean anomaly for which the number of iterations (to solve Kepler's
equation by the method described above) is a minimum. This 'parti-
cular' mean anomaly is given by

M, = JTZ—- e radians
and corresponds to the solution E = /2 radians = 90° exactly.

The number of required iterations increases as M differs more
from M,, on both sides of the 'valley'. For instance, for e =0.75
we have M, = 47.03 degrees, and the number of steps needed to obtain
E with an accuracy of 0.000001 degree is as follows :

M iter, M iter.

5° 51 60° 11
10° 37 70° 12
20° 23 90° 21
30° 15 110° 32
40° 9 130° 43
47° 5 150° 54

55° 8 170° 59
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An interesting fact is that, when M is between M, and 180°, the
results of the successive iterations oscillate while converging to
the exact value: they do not constantly vary in the same direction
as was the case in Example 29.a. For e = 0.75 and M = 70°, the
results of the successive iterations are

707000 000 starting value
110.380316 larger

110.281 870 smaller
110.307 524 larger
110.300850 smaller
110.302 587 larger

110.302 135 smaller

etec...

Second Method

When the orbital eccentricity e is larger than 0.4 or 0.5, the
convergence of the method described above can be so slow that it may
be advisable to use a better iteration formula. A better value B,
for E is

M + e sin Eg ~ Ey
1 - e cos Ey

Ey = Eg + (29.7)

where E; is the last obtained value for E. In this formula, the
angles M, Eg and E, are all expressed in radians. If one wishes

to work in 'degree mode', then in the numerator only of the fraction
the eccentricity e should be replaced by the 'modified' eccentricity
e, = 180 e/m.

Here, again, the process should be repeated as often as is neces-
sary.

Note the difference between formulae (29.6) and (29.7). The first
one directly gives a new approximation for E. While formula (29.7)
too gives a new approximation E, for the eccentric anomaly, the
fraction in the second member is actually a correction to the pre-
vious value E;.

Example 29.b — Same problem as in Example 29.a, but now using
formula (29.7).

We shall work in degree mode, so in this case formula (29.7)
takes the following form :

5 + 5.72957795 sin B, - Eg
1 = 0.100 cos £,

E, = Ey +

Starting with Ey = M = 5°, we obtain the following values:
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Eq correction E,
5.000 000 000 +0.554 616 193 5.554 616 193
5.554616 193 -0.000026 939 5.554 589 254
5.554 589254 -0.000 000001 5.554 589 253

In this case, an accuracy of 0.000 000001 degree is obtained after
only three iterations.

We solved Kepler's equation for some values of e and M; see Ta-
ble 29.A, where the successive columns give the orbital eccentrici-
ty e, the mean anomaly M, the corresponding value of E, and the
number of steps needed by using the first (1) and the second (2)
method, starting with E = M as the first approximation. A computer
working with twelve significant digits was used, and iterations were
performed until the new value of E differed from the previous one
by less than 0.000001 degree.

It appears that, generally speaking, a larger value of e requires
a larger number of itera-
tions, for the first me-
thod as well as for the

TABLE 29.a second one. But with the

second method the number

€ M E (1) (2) of these iterations is
0.1 5 5°554589 6 2 much smaller.
0.2 5 6.246908 9 2 For small values of
0.3 5 7.134960 12 2 the eccentricity, say
0.4 5 8.313903 16 2 for e < 0.3, the first
0.5 5 G.950063 21 2 method still seems the
o best one: we may prefer
0.6 5°  12.356653 28 3 to perform 5 oo casy
0.7 3 16.167990 39 3 iterations instead of
0.8 3 22.656579 52 4 two iterations with the
0.9 3 33.344447 58 5 more complicated formula
0.99 5 45.361023 50 11 (29.7). Only for larger
0.99 1° 24.,725822 150 8 values of the eccentri-
0.99 33 89.722155 6 5 city is formula (29.7)

to be preferred to the
first method.

In some cases, the
first method is disastrous. See the next-to-last line of the table:
no less than 150 iterations are needed to obtain E for the values
e=0.99 and M= 1°.

Finally, Table 29.A shows that the number of steps needed to ob-
tain a given accuracy does not only depend on the value of e, but on
that of M too. See the last line of the table, where the first me-
thod requires only six iterations, in spite of the large value of
the orbital eccentricity, namely e = 0,99.
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Although for large values of the eccentricity formula (29.7) is
superior to (29.6), there can still be problems. We performed some
calculations with formula (29.7) on the HP-85 microcomputer, each
time taking M as starting value for . Table 29.B gives the succes-
sive ‘better' values of E (in degrees) for three cases.

188.700250865
90.0043959725
58.7251974236
41.762008288

34.1821261793
32.4485414136
32.361223124

32.3610074734
32.3610074722
32.3610074722

930.362114752
418.384869795
~345.064633754
10182.3247508
1840.68260539
-5573.41581953
-2776.37618814
-478.97469399
-185.902957505
-86.6958017962
-48.9711628749
-14.7148241705
168.189220986
92.1098260913
64.2252288664
52.4123211568
49,7106850572
49,5699983807
49.5696248567
49.5696248539

832.86912333
275.954859759
-87.610596019
-48.5623921307
-11.225108839
340.962715254
-5996.93473678
-2079.96780001
511.49423506
257.391360843
5.969894505
1094.05946279
-33606.763133
-12599.3759885
11889243.763
3642203.90477
-432120.48862
-145379.711482
142691.415319
56806.8295471

In the first example (e = 0.99, M = 2°) we start with E = 2°. The
first iteration gives E = 188°.7, which is even farther away from
the solution! But thereafter come the values 90°, 59°, 42°, and
then the procedure converges rapidly: after the eighth iteration the
vesult is reached with an accuracy of 0.000 004 arcsecond.

In the second case (e =0.999, M = 6°), the first iterations give
very bizarre values, almost as if by a random-number generator!
There is no convergence at all, until after the 13th iteration the
value 168° is obtained; seven more steps then give us the correct
solution.

.. Third case: same eccentricity, but now M = 7°. Here too the suc-
Yessive results jump irregularly back and forth, and after 20 steps
‘#t111l nothing reasonable is reached. Not before the 47th iteration

{not given in the table) do we obtain the correct solution, namely

82,270 2615.

It is truly remarkable that for the same eccentricity 0.999, but
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for M= 7°01 instead of 7°.00, the correct value of E is reached
after only twelve iterations.

The HP-85 works with 12 significant digits. If you use another
computer, the number of iterations can sometimes differ appreciably
from those we mention here. When one calculates the second case
(e =0.999, M=6°) with the HP-67 pocket calculator, which works
with 10 significant digits, the successive results (in degrees) are

930.3621195
418.3848584
-345.0645049
10182.69391
1883.665232
-162.6729360
~85.06198931
~47.82386405
~13.18454655
211.0527629
84.65261970
60.76546811
51.35803706
49.62703439
49.56968687
49.56962485
49.56962485

It is interesting to compare these values with those of Table
29.B. After the third iteration, the difference with the value ob-
tained with the HP-85 is still 0.00027 degree only; after the next
iteration, the difference is 0°.37, and after the next one it is 43
degrees! Nevertheless, convergence to the exact value is eventually
achieved.

It is evident that, when e is large, formula (29.7) guarantees
only a local convergence. The successive results jump irregularly
back and forth, and only when by chance a result falls into the
'right domain' do the next results converge rapidly.

Figure 4, due to Edwin Goffin, is a three-dimentional representa-
tion of the number of steps needed to obtain E with an accuracy of
10"% degree, as a function of the orbital eccentricity and the mean
anomaly, when formula (29.7) is used. As before, M is used as the
starting value for E. The left corner, near e =1 and M = 0°, is
the 'dangerous zone'. Figure 5 shows a magnification of that zone:
we see a large number of peaks which are close together; the number
of iterations needed to obtain the stated accuracy differs conside-
rably even when e or M is changed very little.

Consequently, formula (29.7) is rather worrying for large values
of e and small values of M. In some cases, the computer runs the
risk of overflowing because the denominator of the fraction becomes
almost zero.
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This trouble can be avoided by choosing, as a starting value for E,
a better value than just M. Mikkola [1] finds a good starting value
as follows.

If M is expressed in radians, calculate

- 1 - e g = M
4be + 0.5 -

2= Ve: /BEta®

The sign of the square root is to be chosen as the sign of B.
Attention: the number under the cubic root can be negative, resul-
ting in a computer error!

Then calculate

0.078 s,°

s, =z -2 s = s
° 2 ° 1l+e

Then a good starting value for formula (29.7) is
E = M+ e (3s - 4s3) (29.8)

This procedure is useful only in the 'dangerous region', that is,

when both |M| < 30° and 0.975 < e < 1. Othervise, one just can use
M as a starting value for E.

Figure 6, again due to Goffin, illustrates the number of itera-
tions required to obtain an accuracy of 1079 degree when formula
(29.7) is used with the starting value given by (29.8).
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Third Method

Roger Sinnott [2] devised a method using a binary search to lo-
cate the correct value of E. The binary search has already been
mentioned at the end of Chapter 5. The procedure is absolutely
foolproof; it always converges to the most exact value of which the
machine is capable, and it works for any eccentricity between 0
and 1. The relevant part of Sinnott's program, in BASIC, is given
below. Here, E is the orbital eccentricity, and M the mean anomaly
in radians. The result of the program is the eccentric anomaly E0Q
expressed in radians too.

For a computer language with 10-digit accuracy, 33 steps are nee-
ded in the binary search. The number of loops in line 180 should be
increased to 53 if you are using a 16-digit BASIC. The number of
steps needed is 3.32 X the number of required digits, where 3.32 is
equal to 1/log,, 2.

100 Pl =3.14159265359

110 F=SGN (M) : M= ABS(M)/(2*P1)
120 M= (M=INT(M))*2*PL*F

130 IF M<O THEN M = M+2%P1

140 F=1

150 IF M>P1 THEN F = ~1

160 IF M>PL THEN M = 2%P1 -M

170 E0 =P1/2 : D=Pl/4

180 FOR J =1 TO 33

190 M1 = EO - EXSIN (EQ)

200 EO = EO + D*SGN (M-M1) : D =D/2
210 NEXT J

220 EO = EOXF

Fourth Method

The formula

_ sin M
tan E = P PTa—— (29.9)

gives an approximate value for E, and is valid only for small values
of the eccentricity.

For the same data as in Example 29.a, the formula (29.9) gives

+0.087 155 74

+0.896 19470 ~ 10.09725090

tan E =

whence E = 5°.554 599, the exact value being 5°.554589, so the error
is only 0".035 in this case. But for the same eccentricity and M =
82°, the error amounts to 35'".
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The greatest error due to the use of formula (29.9) is

070327 for e =0.15
0.0783 for e = 0.20
0.1552 for e = 0.25
1.42 for e = 0.50
24.7 for e = 0.99

For the orbit of the Earth (e = 0.0167), the error will be less
than 0'.2. In that case, formula (29.9) can safely be used except
when very high accuracy is needed.
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Chapter 30

Elements of the Planetary Orbits

Although Appendix II mentions the principal periodic terms needed to
calculate the heliocentric positions of the planets (with explana-
tions given in Chapter 31), it may be of interest to have informa-
tion about the mean orbits of these bodies.

The orbital elements of the major planets can be expressed as po-
lynomials of the form

ag + a T + ayT? + a, T3
where T is the time measured in Julian centuries of 36525 ephemeris
days from the epoch
J2000.0 = 2000 January 1.5 = JDE 2451 545.0.

In other words,

_ JDE - 2451 545.0
T = 36595 (30.1)

This quantity is negative before the beginning of the year 2000,
positive afterwards. The orbital elements are:

L = mean longitude of the planet;

a = semimajor axis of the orbit;
eccentricity of the orbit;

inclination on the plane of the ecliptic;
longitude of the ascending node;
longitude of the perihelion.

A D0

The longitude of the perihelion is often denoted by w. But this
is very confusing because the argument of the perihelion has the
symbol w. For this reason, we prefer the symbol T for the longitude
of the perihelion, and we have T = Q + w.

It should be noted that the quantities L and T are measured in

197



198 ASTRONOMICAL ALGORITHMS

/)‘(”//—_;liptic N\Q\l,\

The arc YNX" is a part of the ecliptic as seen from the Sun, and
NPXX' is a part of the orbit of the planet (the intersection of the
planet’s orbital plane with the celestial sphere). <Y 1s the vernal
equinox (longitude 0°), N the ascending node of the orbit, P the
planet's perihelion. At a given instant, the mean planet is at X,
the true planet at X'. Then we have

Q = arc YN = longitude of the ascending node,

w = arc NP = argument of the perihelion,

M =arc YN + arc NP = Q@ + w = Iongitude of the perihelion,

L =arc YN + arc NX = Q + w+ M = mean longitude of the planet,
M = arc PX = planet'’s mean anomaly,

¢ = arc AX' = equation of the center,

v = arc PX' = M+ Cc = planet's true anomaly,

i = inclination of the orbit = angle between arcs NP and NX".

two different planes, namely from the vernal equinox along the
ecliptic to the orbit's ascending node, and then from this node
along the orbit. See the Figure above.

The planet's mean anomaly is given by
M=L-"T

Table 30.A gives the coefficients ay to a3 for the orbital ele-
ments of the planets Mercury to Neptune. The values for the semi-
major axes are in astronomical units. Those for the angular quanti-
ties L, i, € and T are expressed in degrees and decimals; they are
referred to the ecliptic and mean equinox of the date.

The tabular values have been deduced from the planetary theory
VSOP82 of P. Bretagnon [1]. See Chapter 31 for more information
about the theories VSOP82 and VSOP87. The elements L, i, © and T
are actually referred to the mean dynamical ecliptic and equinox of
the date, which differ very slightly from the FKS system (see Chap-
ter 24).

In some cases, it may be desirable to refer the elements L, i, @
and T to a standard equinox. This is the case, for instance, when
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one wishes to calculate the least distance between the orbit of a
comet and that of a major planet, when the elements of the first
orbit are referred to a standard equinox.

By means of Table 30.B, it is possible to calculate these ele-
ments for the major planets, referred to the standard equinox of
J2000.0. The elements a and e are not modified by a change of re-
ference frame, of course. They should be calculated by means of
Table 30.A.

For the Earth, in order to avoid a discontinuity in the variation
of the inclination and a jump of 180° in the longitude of the ascen-
ding node at the epoch J2000.0, the inclination (on the ecliptic of
2000.0) is considered as negative before A.D. 2000.

Example 30.a — Calculate the mean orbital elements of Mercury on
2065 June 24 at OP TD.

We have (see Chapter 7)
2065 June 24.0 = JDE 2475 460.5
whence, by formula (30.1),
T = +0.654770704997

Consequently, from Table 30.A we find :

L = 252°.250906 + (149474°.072 2491 % 0.654770704997)
+ (0.00030397) (0.654770704997)2
+ (0.000000018) (0.654 770704 997)3
= 98123°.494702 = 203°494702 ,

a = 0.387098 310 m o= 78°.475382

e = 0.20564510 from which we deduce
i= 7°006171 M = L-m = 125°019 320
Q = 49°.107 650 w = T-Q = 29°367732

From Tables 30.A and 30.B, it appears that the inclination of the
orbit of Mercury on the ecliptic of the date is increasing, but that
it is decreasing with respect to the fixed ecliptic of 2000.0. The
opposite occurs for Saturn and Neptune.

Between T = -30 and T = +30, Venus' orbital inclination on the
ecliptic of the date is continuously increasing, but with respect to
the fixed ecliptic of 2000.0 Venus' inclination reached a maximum
about the year +690.

Uranus' orbital inclination on the ecliptic of the date reached a
ainimum about the year +1000, but with respect to the fixed equinox
of 2000.0 its value is continuously decreasing during the time pe-
tiod considered here.
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TABLE 30.A
Orbital Elements for the mean equinox of the date
a9 ay as a3

MERCURY
L | 252.250906 +149474.072 2491 | +0.000 303 97 +0.000000018
a 0.387 098 310
e 0.20563175 +0.000 020406 -0.000 0000284 | -0.00000000017
i 7.004 986 +0.0018215 -0.000018 09 +0.000 000 053
Q| 48.330893 +1.186 1890 +0.000 17587 +0.000000211
m| 77.456119 +1.556 4775 +0.000 295 89 +0.000 000 056
VENUS
L | 181.979801 +58519.213 0302 +0.000310 60 +0.000 000015
a 0.723 329820
e 0.006 77188 -0.000047 766 +0.000 0000975 | +0.000 000 000 44
i 3.394 662 +0.001 0037 ~0.000 000 88 -0.000 000 007
Q) 76.679920 +0.901 1190 +0.000 406 65 -0.000 000080
w1 131.563707 +1.402 2188 ~0.00107337 -0.000 005 315
EARTH
L | 100.466 449 +36000.769 8231 +0.000 30368 +0.000 000 021

1.000001018
e 0.01670862 -0.000042 037 -0.000000 1236 | +0.000 000 000 04
i 0
m | 102.937 348 +1.719 5269 +0.000459 62 +0.000 000 499
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TABLE 30.A (cont.)
20 a1 a2 23
MARS
L |355.433275 +19141.696 4746 +0.000 31097 +0.000 000 015
a 1.523 679342
e 0.093 40062 +0.000 090 483 ~0.000 0000806 | —0.000 000 00QQ 35
i 1.849726 -0.0006010 +0.000012 76 -0.000 000 006
49,558 093 +0.772 0923 +0.000016 05 +0.000002 325
336.060 234 +1.8410331 +0.000 13515 +0.000000 318
JUPITER
L | 34.351484 +3036.3027889 +0.000 22374 +0.000000 025
a 5.202 603191 | +0.000000 1913
e 0.048 494 85 +0.000 163 244 -0.0000004719 | -0.000000 00197
i 1.303270 -0.005 4966 +0.000 004 65 -0.000 000 004
§2 1100.464 441 +1.0209550 +0.00040117 +0.000000 569
m ) 14.331309 +1.612 6668 +0.001 03127 -0.000 004 569
SATURN
L | 50.077471 +1223.511 0141 +0.000519 52 -0.000 000 003
a 9.554 909 596 | —0.000 002 1389
e 0.05550862 | -0.000346818 ~0.000 0006456 | +0.000 000003 38
i 2.488878 -0.0037363 ~-0.00001516 +0.000 000 089
2 1113.665 524 +0.8770979 -0.00012067 -0.000002 380
w | 93.056 787 +1.9637694 +0.000837 57 +0.000 004 899
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TABLE 30.A (cont.)
a9 a3 a3 a3

URANUS
L [314.055005 +429.864 0561 +0.000 304 34 +0.000 000026

19.218446 062 | -0.000 000 0372 +0.000 000 000 98
e 0.04629590 | -0.000027 337 +0.000 0000790 |+0.000 000 000 25
i 0.773 196 +0.0007744 +0.000 037 49 -0.000000092
1 74.005947 +0.521 1258 +0.001 33982 +0.000018516
w {173.005 159 +1.486 3784 +0.000214 50 +0.000 000433
NEPTUNE
L ]304.348665 +219.883 3092 +0.000 309 26 +0.,000000018
a 30.110386869 | -0.000000 1663 +0.000 000 00069
e 0.008988 09 +0.000 006 408 -0.0000000008 |-0.000000000 05
i 1.769952 ~0.009 3082 ~0.000 007 08 +0.000 000028
2 1131.784 057 +1.102 2057 +0.000 260 06 -0.000 000 636
7| 48.123691 +1.426 2677 +0.000379 18 -0.000 000003

1.

The longitudes of the nodes, referred to the equinox of the date,
are increasing for all planets. But with respect to the fixed equi-
nox of 2000.0 these longitudes are decreasing, except for Jupiter

and Saturn.

Reference

P. Bretagnon, 'Théorie du mouvement de 1l'ensemble des planétes.
Solution VSOP82', Astronomy and Astrophysics, Vol. 114, pages
278-288 (1982).
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TABLE 30.B
Orbital Elements for the standard equinox J2000.0
a9 a1 2 asj

MERCURY
. | 252.250906 +149472.674 6358 | —0.000 005 35 +0.000 000 002
i 7.004 986 -0.0059516 +0.00000081 +0.000 000 041
Q| 48.330893 ~-0.1254229 -0.000088 33 -~-0.000000 196
n}) 77.456119 +0.1588643 -0.00001343 +0.000 000 039
VENUS
| 181.979 801 +58517.8156760 | +0.00000165 | —0.000 000 002
i 3.394 662 -0.0008568 ~0.000 032 44 +0.000 000010
Q1 76.679920 -0.278 0080 -0.00014256 -0.000 000198

131.563 707 +0.004 8646 ~0.001382 32 -0.000 005332
EARTH
L }1100.466449 +35999.3728519 -0.00000568 +0.000 000000
i 0 +0.013 0546 -0.000 009 31 -~0.000 000034
Q1174.873174 -0.241 0908 +0.000 040 67 -0.000001 327
7 | 102.937 348 +0,322 5557 +0.000 150 26 +0.000000478
MARS
L | 355.433275 +19140.2993313 +0.000 002 61 -0.000 000003
i 1.849726 -0.008 1479 -0.000 022 55 -0.000 000 027
| 49.558093 -0.294 9846 -0.00063993 ~0.000002 143
7} 336.060234 +0.4438898 -0.00017321 +0.000 000 300
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TABLE 30.B (cont.)
a9 a3 a a3

JUPITER

L | 34.351484 +3034.905 6746 -0.00008501 +0.000 000 004
i 1.303 270 -0.0019872 +0.00003318 +0.000 000092
R 1100.464 441 +0.176 6828 +0.00090387 -0.000007 032
m | 14.331309 +0.2155525 +0.00072252 -0.000 004 590
SATURN

L} 50.077471 +1222.1137943 +0.00021004 -0.000 000019
i 2.488 878 +0.002 5515 -0.00004903 +0.000 000018
| 113.665524 -~0.256 6649 ~-0.00018345 +0.000 000 357
w1 93.056787 +0.566 5496 +0.00052809 +0.000 004 882
URANUS

L | 314.055005 +428.466 9983 -0.000 004 86 +0.000 000 006
i 0.773 196 -0.0016869 +0.000 003 49 +0.000 000016
Q1 74.005947 +0.074 1461 +0.000 405 40 +0.000 000 104
w { 173.005 159 +0.089 3206 -0.000094 70 +0.000000413
NEPTUNE

L | 304.348 665 +218.486 2002 +0.000 000 59 -0.000 000 002
i 1.769 952 +0.0002257 +0.000 00023 -0.000000000
Q 1131.784 057 -0.006 1651 -0.000002 19 -0.000000078
m | 48.123691 +0.029 1587 +0.00007051 -0.000 000023




Chapter 31

Positions of the Planets

In 1982, P. Bretagnon of the Bureau des Longitudes of Paris published
his planetary theory VSOP82. The acronym VSOP means 'Variations Sé-
culaires des Orbites Planétaires'. The VSOP82 consists of long se-
ries of periodic terms for each of the major planets Mercury to Nep-
tune. When, for a given planet, the sums of these series are evalua-
ted for a given instant, one obtains the values of the following
quantities for the osculating orbit. [The osculating orbit is the
'instantaneous' orbit of the planet; see more about this notion in
Chapter 32.]

= sin i sin @

a = semimajor axis of the orbit
A = mean longitude of the planet
h=esinm

k=ecos T

p

q

= sin ii cos @

where e is the orbital eccentricity, T the longitude of the peri-
helion, i the inclination, and § the longitude of the ascending
node.

Once a, A, e and 1 (from h and k), i and  (from p and gq) are
known, the true position of the planet in space can be obtained for
the given instant.

The inconvenience of the VSOP82 solution is that one does not
know where the several series should be truncated when no full accu-
racy is required. Fortunately, in 1987 Bretagnon and Francou con-
structed the version called VSOP87, which gives periodic terms for
calculating the planets' heliocentric coordinates directly, namely

L, the ecliptical longitude
B, the ecliptical latitude
R, the radius vector (= distance to the Sun)

205
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It should be noted that L is really the planet's ecliptical lon-
gitude, not the orbital longitude. In the figure of page 198, the
orbital longitude of the planet is the sum of the arcs YN and NX'
(in two different planes). Through the planet's position X', a great
circle X' X" is drawn perpendicularly to the ecliptic. Then the
planet's ecliptical longitude is the measure of the arc vy X".

Although the methods used for the construction of the VSOP82 and
VSOP87 have been described in the astronomical literature (see the
References 1 and 2), these theories themselves are available only on
magnetic tape. By kind permission of Messrs. Bretagnon and Francou,
we give in Appendix II the most important periodic terms from the
VSOP87 theory. For each planet, series labelled LO, L1, L2, ...

3

B0, B1l, ..., RO, R1, ... are provided.

The series LO, L1, ... are needed to calculate the planet's helio-
centric ecliptical longitude L; the series BO, Bl, ... are needed
for the ecliptical latitude B; and the series RO, Rl, ... are for

the radius vector R.

Each horizontal line in the list represents one periodic term and
contains four numbers :

— the current No. of the term in the series. It is not needed in
the actual calculation and is given for reference purpose only;

— three numbers which we shall call here A, B, and C, respectively.
If JDE is the Julian Ephemeris Day corresponding to the given in-

stant, calculate the time T measured in Julian millennia from the
epoch 2000.0

_ JDE - 2451 545.0
T = 365 250 Gr.n

The value of each term is given by
A cos (B+CT)

For example, the ninth term of the series LO for Mercury is
equal to 1803 cos (4.1033 +5661.33201).

In the lists of Appendix II, the quantities B and ¢ are expressed
in radians. The coefficients A are in units of 1078 radian in the
case of the longitude and the latitude, in units of 1078 astronomi-
cal unit for the radius vector.

When the coefficient A has less decimals, then less decimals too
are given for B and ¢. This is merely done to avoid keypunching
extraneous digits which do not influence the result.

To obtain the heliocentric ecliptical longitude L of a planet at
a given instant, referred to the mean equinox of the date, proceed
as follows. Calculate the sum LO of the terms of series L0, the
sum L1 of the terms of series L1, etc. Then the required longitude
in radians is given by

L =(L0+L1T +#L272 + L3 13 + L4 1% + L515)/108 (31.2)
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Proceed in the same way for the heliocentric latitude B and for
the radius vector R.

The planet's heljocentric longitude L and latitude B, obtained
thus far, are referred to the mean dynamical ecliptic and equinox
of the date defined by Bretagnon's VSOP planetary theory. This refe-
rence frame differs very slightly from the standard FK5 system men-
tioned in Chapter 20. The conversion of L and B to the FK5 system
can be performed as follows, where T is the time in centuries from
2000.0, or T = 10 T.

Calculate
L' =L - 1°397T ~ 0.00031 72
Then the corrections to L and B are

AL
AB

-0".09033 + 0".03916 (cos L’ + sin L") tan B

31.3
+0".03916 (cos L' - sin L') ¢ )

These corrections are needed only for very accurate calculations.
They may be dropped if use is made of the abridged version of the
VSOP87 given in Appendix II.

How to obtain the geocentric positions of the planets will be
explained in Chapter 32.

Example 31.a — Calculate the heliocentric coordinates of Venus on
1992 December 20 at Oh TD.

This date corresponds to JDE 2448 976.5, from which
T = -0.007032169747.

For Venus, series L0 has 24 terms in Appendix II {(there are many
more in the original VSOP87 theory), L1 has 12 terms, L2 has 8
terms, {3 and L4 both have 3 terms, while L5 contains just a
single term. For the sums of these series, we find

LO = +316402122 L3 = -56
L1 = +1021353038718 L4 = -109
L2 = +50055 Ls = -1

Hence, by formula (31.2), we find that the heliocentric longitude
of Venus, for the given instant and referred to the mean equinox of
the date, is

L = -68.6592582 radians = -3933°.88572 = +26°.11428

We calculate the heliocentric latitude B and the radius vector R
in the same way. It should be noted that, in the case of Venus, the
series B5 and R5 do not exist. The results are

B = ~0,045 7399 radian = ~2°.62070, R =0.724603 AU
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Accuracy of the results

When high accuracy is desired, it appears that the perijodic terms
in the VSOP87 solution converge rathér slowly. What is the magni-
tude of the errors in the coordinates if one truncates the list of
terms at any point? The following empirical rule has been given by
Bretagnon and Francou [3] :

If n is the number of retained terms, and A the amplitude of
the smallest retained term, the accuracy of the thus truncated
series is about nvﬁix A, where N is a number smaller than 2.

As an example, let us consider the heliocentric longitude of Mer-
cury. In Appendix II, series L0 for this planet contains 38 terms,
and the coefficient of the smallest retained term is 100 x 1078 ra-
dian. Therefore, we may expect that the greatest possible error in
Mercury's heliocentric longitude is approximately

2 x /38 x 100 x 108 radian = 2'".54.

Of course, series L1, L2, etc., are truncated too, which gives
rise to additional uncertainties of the order of 0".41 t, 0'".08 12,
etc.

References

1. P. Bretagnon, 'Théorie du mouvement de 1'ensemble des planétes.
Solution VSOP82', Astromomy and Astrophysics, Vol. 114, pages
278-288 (1982).

2. P. Bretagnon, G. Francou, 'Planetary theories in rectangular and
spherical variables. VSOP87 solutions', Astronomy and Astro-
physics, Vol. 202, pages 309-315 (1988).

3. Ibid., page 314.



Chapter 32

Elliptic Motion

In this Chapter we will describe two methods for the calculation of
geocentric positions in the case of an elliptic orbit. In the first
method, the geocentric ecliptical longitude and latitude of a major
planet (Mercury to Neptune) are obfained from the heliocentric
ecliptical coordinates of the planet and of the Earth. In the second
method, which is better suited for minor planets and periodic co-
mets, the right ascension and declination of the body, referred to

a standard equinox, are obtained directly; use is made of the geo-
centric rectangular coordinates of the Sun.

First Method

We will describe how the apparent right ascension and declination
of a major planet can be calculated for a given instant.

For the given instant calculate, by means of the appropriate se-
ries given in Appendix II (using the method described in Chapter 31),
the heliocentric coordinates L, B, R of the planet, and the helio-
centric coordinates L,, B,, R, of the Earth. Do not convert from
the dynamical ecliptic and equinox to the FK5 ecliptic and equinox
at this stage.

Then find
x = Rcos B cos L. - R, cosS B, cos L,
y = Rcos B sinL - R, cos B, sin L, (32.1)
z = Rsin B - R, sin B,

The geocentric longitude A and latitude B of the planet are then
given by

Z

tan B = /:—2—:—-—___9_2‘ (32.2)

tan A =

% e

209
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Look out for the proper quadrant of A. One may use the 'second'
arctangent function, A = ATN2 (y, x), or see the precepts given in
Chapter 1 about 'the correct quadrant'.

However, the geocentric coordinates A, B obtained in this manner
are the planet's geometric coordinates referred to the mean equinox
of the date. If high accuracy is needed, it is necessary to take
into account the apparent displacement of the planet from its true
position due to the finite velocity of light. This apparent displa-
cement includes :

(a) the effect of light-time, the planet being seen where it was
when light left it;

(b) the effect of the Earth's motion which, combined with the
velocity of light, causes an apparent displacement of the
object, just as the annual aberration in the case of a star.

The combination of the two effects is often called 'planetary
aberration’. However, we prefer to reserve the term aberration to
the effect (b) alone, because this effect is of the same nature as
the aberration of the stars. Moreover, for some applications it is
not necessary to take effect (b) into account. Suppose we want to
calculate occultations of stars by planets. Then the effect of
light-time must be taken into account in the calculation of the po-
sition of the planet; but we may drop effect (b) on the condition
that the effect of aberration on the star's position is dropped too.
Similarly, the effect of nutation can be neglected for both bodies
in that particular case. The reason is evident: because the planet
and the star are close together on the celestial sphere, the effects
of aberration and of nutation will not change their relative posi-
tions.

(a) effect of light-time: at time t, the planet is seen where it
was at time ¢ - T, hence in the direction obtained by combi-
ning the Earth's position at time t with that of the planet at
time t - T, where T is the time taken by the light to reach
the Earth from the planet. This time is given by

T = 0.0057755183 A day (32.3)

where A is the planet's distance to the Earth in astronomical
units, given by

A= V%2 + g2 + g2 (32.4)

(b) the effect of aberration can be calculated as for the stars,
namely by means of formulae (22.2), where @ is equal to
L, * 180°.

However, both effects can be calculated simultaneously. To the
order of accuracy that the motion of the Earth during the light-time
is rectilinear and uniform, the planet's apparent position at time ¢
is the same as its geometric position at time ¢ - T. In other words,
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in this method the Earth's position at time t -1 must be combined
with the planet's position at the same time ¢ - T.

0f course, the value of the light-time T is not known in advance
because the planet's distance A to the Earth is not known. But this
distance can be found by iteration, using for instance the value
A =0 (and hence T = 0) in the first calculation.

For very accurate calculations, the planet's geocentric longitude
A and latitude B can be converted from the dynamical ecliptic and
equinox to the FK5 ecliptic and equinox by means of formulae (31.3),
replacing L by A, and B by B.

To complete the calculation of the planet's apparent position,
the corrections for nutation should be applied. This is achieved by
calculating the nutation in longitude (AY) and in obliquity (Ae),
as explained in Chapter 21. Add AY to the planet's geocentric lon-
gitude, and A€ to the mean obliquity €, of the ecliptic. The appa-~
rent right ascension and declination of the planet can then be dedu-
ced by means of formulae (12.3) and (12.4).

The elongation Y of the planet, that is its angular distance to
the Sun, can be calculated from

cos Y = cos B cos (A - A,) (32.5)

where A, B are the planet's apparent longitude and latitude, and
A, the Sun's apparent longitude. The Sun's latitude, which is always
smaller than 1.2 arcsecond, may be neglected here.

Example 32.a — Calculate the apparent pcsition of Venus on 1992
December 20 at 0B TD = JDE 2448 976.5.

Because the planet's distance to the Earth is not known in ad-
vance, the value of the light-time is not known. Therefore, we start
with the calculation of the true (geometric) position of the planet
at the given time. We find the following values for the heliocentric
coordinates (see Example 31.a):

L = 26°.11428 B = -2°62070 R =0.724603
The coordinates of the Earth are calculated in the same way :
L, = 88°.35704 B, = +0°.00014 R, = 0,983824 (A)
whence, by formulae (32.1), (32.4), and (32.3),
x = +0.621 746 A = 0.910 845
y = -0.664810 T = 0.0052606 day
z = -0.033134

A is the true distance of Venus to the Earth on 1992 December 20.0.
We now repeat the calculation of Venus' heliocentric coordinates for
the instant ¢ - T, that is for JDE = 2448976.5 - 0.005 2606.
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We find
L = 26°10588, B = -2°.62102, R = 0.724 604 (B)

Combining these new values with the values (A) of Lo, Bos Ros
we find

x = +0.621794 4 = 0.910947
y =-0.664905 (C) T = 0.0052612 day
z =-0.033138

If we repeat the calculation with this new value of T, we find
the same values (B) for L, B and R again, to the given accuracy.

Hence, the final value for the light-time is T = 0.0052612 day,
and A = 0.910947 is the apparent distance of the planet on 1992
December 20 at OB TD. It is the distance at which we 'see' the pla-
net at that instant; in other words, it is the distance travelled
by the light which left the planet at time t- T to reach the Earth
at time t.

Let us now calculate Venus' geocentric longitude and latitude.
If we put the values (C) of x, y, z in formulae (32.2), we obtain

A = 313°.08102 B = -2°.08474
which are corrected for light-time, but not yet for aberration.

From Chapter 22, we find

e = 0.016711573
m = 102°.88675

and formulae (22.2) give, for © = 268°35704,

AN = -14".868 = -0°.00413
AR -0".531 = -0°.00015

and the apparent longitude and latitude of Venus (not yet corrected
for nutation) are

313°.07689
-2°.08489

A
g

"

313°.08102 - 0°.00413
-2°.08474 - 0°.00015

]
1]

L Alternatively, we could have corrected for the light-time
and the aberration together at once by calculating the coor-
dinates of the Earth for the instant t - 1, which gives

L, = 88°.35168, B, = +0°.00014, R, = 0.983825.

We now combine these values with Venus' coordinates (B).
Formulae (32.1) and (32.2) then give

x = +0.621702 A = 313°.07687
y = -0.664 903 B = -2°.08489
z = —0.033138

or nearly the same values as before. ]
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The corrections for reduction to the FK5 system are, from (31.3),

Ax = -0".09027 = -0°.00003
AR = +0'.05535 = +0°.00001
so the corrected values are
A = 313°.07689 - 0°.00003 = 313°.07686
B = —-2°.08489 + 0°.00001 = -2°08488

From Chapter 21, we find
Ay = +16".749, Ae = -1".933, € = 23439669
and the value of X\ corrected for nutation is
A = 313°.07686 + 16".749 = 313°.08151
Finally, by (12.3) and (12.4),
apparent right ascension:
a = 316°17291 = 21M078194 = 21h04m418,50
apparent declination:

§ = -18°.88802 = -18°53'16".9

The exact values, obtained by an accurate calculation using the
complete VSOP87 theory, are o = 21R04%415.454, & = -18°53'16™. 84,
true distance = 0.91084596.

Second Method

Here we use the orbital elements referred to a standard equinox,
for instance 2000.0, and the geocentric rectangular equatorial coor-
dinates X, Y, 2 of the Sun referred to that same equinox. These
rectangular coordinates can be taken from an astronomical almanac,
or they may be calculated by the method described in Chapter 25.

In this method, the heliocentric longitude and latitude of the
body (minor planet or periodic comet) are not calculated. Instead,
we calculate its heliocentric rectangular equatorial coordinates x,
v, z, after which the right ascension, declination and other quan-
tities are derived by means of simple formulae.

The following orbital elements are supposed to be known. They may
be taken, for instance, from the Circulars of the I.A.U., from the
Minor Planet Circulars of the Minor Planet Center, etc.
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= semimajor axis, in AU
eccentricity

inclination

argument of perihelion
longitude of ascending node
= mean motion, in degrees/day

B OE BN
]

where i, W and § are referred to a standard equinox.

If a or n are not given, they can be calculated from

g n = 0.985 607 6686
1-e a VQ;

where g is the perihelion distance in AU. The numerator of the se-
cond fraction is the Gaussian gravitational constant 0.017202098 95
converted from radians to degrees.

(32.6)

Strictly speaking, all these elements are valid only for one given
instant, called the Epoch. They vary with time under influence of
planetary perturbations. (See, later in this Chapter, the note
about osculating elements). Unless high accuracy is required, the
elements may be considered as invariable during several weeks or
even months, for example during the whole apparition of a comet.

Besides the above-mentioned orbital elements, either the value M,
of the mean anomaly at the epoch, or the time T of passage through
perihelion, is given. This allows the calculation of the mean ano-
maly M at any given instant. The mean anomaly increases by n deg-
rees per day, and is zero at time T.

The orbital elements of a minor planet or of a periodic comet
being given, the geocentric position for a given date can be cal-
culated as follows. Firstly, we must calculate the quantities a, b,
c and the angles A, B, ¢, which are constants for a given orbit.

Let € be the obliquity of the ecliptic. If the orbital elements
are referred to the standard equinox of 2000.0, one should use the
value €,000 = 23°26'21". 448, from which

sin € = 0.39777716
cos £ = 0.917 48206
Then calculate
F = cos Q P = -sin  cos i
G = sin @ cos € Q = cos §§ cos i cos € — sin i sin € (32.7)
= sin @ sin ¢ R = cos  cos i sin € + sin i cos €

As a check, we can use the relations
F2 + G2 + B2 = 1, P2 + Q%2 +R2 =1,
but of course this calculation is not needed in a program.

Then the quantities a, b, ¢, 4, B, C are given by



32. Elliptic Motion 215

tanA=-f;" a= JF2 + p?
tan B = g— b= /G? + Q2 (32.8)
tanc=% c = /H? + R?

The quantities a, b, c should be taken positive, while the angles
A, B, C should be placed in the correct quadrant, according to the
following rules:

sin A has the same sign as cos Q,

sin B and sin ¢ have the same sign as sin .

However, once again, one may use the 'second' arctangent function
if it is available in the program language : A = ATN2 (F, P), etc.

Attention: do not confuse the quantity a with the semimajor axis
a of the orbit!

For eath required position, calculate the body's mean anomaly M,
then the eccentric anomaly E (see Chapter 29), the true anomaly v
by means of formula (29.1), and the radius vector r by means of
(29.2). Then the heliocentric rectangular equatorial coordinates
of the body are given by

x = ra sin{(A+w + v)
y = rb sin(B+w + v) (32.9)
z = rc sin{(C+w + v)

The convenience of these formulae is seen when the rectangular
coordinates are required for several positions of the body. The
auxiliary quantities a, b, ¢, 4, B, ¢ are functions only of @, i
and £, and thus are constants for the whole ephemeris; for each
position only the values of v and r must be calculated. However,
it should be noted that @, i and w are constant only if the body
is in an unperturbed orbit.

For the same instant, calculate the Sun's rectangular coordinates
X, Y, z (Chapter 25), or take them from an astronomical almanac. The
geocentric right ascension a and declination 6 of the planet or
comet are then calculated from

t . Y+ty
an o = N ¥x
A2 = (x+x)2+ (Y+y)2 + (2+2)? (32.10)
sin & = 2+ zZ
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where A is the distance to the Earth and thus is positive. The cor-
rect quadrant of o is indicated by the fact that sin o has the
same sign as (Y +y); however, once more, the second arctangent
function can be used: o = ATN2 (Y +y, X+ x).

If o is negative, add 360 degrees. Then transform a from deg-
rees into hours by dividing by 15.

The equatorial coordinates o and § of the body will be referred
to the same standard equinox as the orbital elements and the Sun's
rectangular coordinates X, Y, Z. However, the values of a and §
obtained in the manner described above refer to the geometric (the
true) position of the body in space. Just as in the 'First Method!
in this Chapter, the effect of light-time should be taken into ac-
count. This is performed as follows.

For the given time ¢, calculate the distance A of the body to
the Earth as described above, and then the light-time T by means
of (32.3). Then repeat the calculation of M, E, v, x, y, z for the
time £ - T, but leave the Sun's coordinates X, Y, Z unchanged.
With the new values of x, y, z, formulae (32.10) will give the cor-
rected values of o and §.

When allowance is made for the light-time only, that is, if no
correction is made for aberration nor for nutation, then the values
obtained for a and & are the so-called astrometric right ascension
and declination of the body at the given instant. The astrometric
position of a minor planet or a comet is directly comparable with
the mean places of stars as given in star catalogues (corrected for
proper motion and annual parallax, if significant). Of course, a
and § are geocentric.

The elongation ¥ to the Sun, and the phase angle B (the angle
Sun — body ~ Earth), can be calculated from

X+x)x + (¥+y)y + (2+42)2 _ R>+ A2 - 2

cos Y R A = SR A (32.11)
_ (X+x)x + (Y+Y)y + (z2+2)z _ r*+ 4% -R?

cos B = — = 77 A (32.12)

where R= /X% + Y2+ 22 = the distance Earth-Sun. The angles Y
and B are both between 0 and +180 degrees.

Do not confuse this R with the quantity R of expressions (32.1),
nor with that of (32.7).

The magnitude of the body is then calculated as follows. In
the case of a comet, the 'total' magnitude is generally calculated
from

m=g+5log A + < logr (32.13)

where g is the absolute magnitude, and Kk a constant which differs
from one comet to another. In general, Kk is a number between 5 and
15.
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For the minor planets, a new magnitude system was adopted by Com-
mission 20 of the Intermational Astronomical Union (New Delhi, No-
vember 1985). The formula for the prediction of the apparent magni-
tude of a minor planet is

magnitude = H + 5 logrA — 2.5 log [(1~G) &, + G, ] (32.14)
with

¢

exp [ -3.33 (tan %)0'63]

I

o, exp [ -1.87 (tan %)1'22]

where B is the phase angle, and ‘exp' is the exponential function,
EXP (x) = eX. Formula (32.14) is valid for 0° £ B £ 120°. H and G
are magnitude parameters, which are different for each minor planet.
H is the mean absolute visual magnitude, while G is called the
‘glope parameter'. Here are the values of H and G for the brightest
minor planets and for some unusual objects [1]:

H G H G
1 Ceres 3.34 0.12 15 Eunomia 5.28 0.23
2 Pallas 4.13 0.11 18 Melpomene 6.51 0.25
3 Juno 5.33 0.32 20 Massalia 6.50 0.25
4 \Vesta 3.20 0.32 433 Eros 11.16 0.46
8 Astraea 6.85 0.15 1566 Icarus 16.4 0.15
6 Hebe 5.71 0.24 1620 Geographos 15.60 0.15
7 Iris 5.51 0.15 1862 Apollo 16.25 0.09
8 Flora 6.49 0.28 2060 Chiron 6.0 0.15
9 Metis 6.28 0.17 2062 Aten 16.80 0.15

In formulae (32.13) and (32.14), the distance to the Sun (r) and
ghe distance to the Earth (A) are in astronomical units, and all
githms are to the base 10.

ple 32.b — Calculate the geocentric position of periodic
comet Encke for 1990 October 6.0 TD, using the
following orbital elements (see Example 23.b):

$ = 1990 Oct. 28.54502 TD i = 11°94524 ) ecliptic
= 2,209 1404 AU 8 = 334°.75006 } and equinox
ﬁ- 0.8502196 w = 186°.23352 | 2000.0

. first calculate the auxiliary constants of the orbit :
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F = +0.904 455 59 P = 40.417 33084

G = -0.391 368 30 o = +0.72952209

H=-0.16967893 R = +0.54187867
whence, by formulae (32.8),

A= 65°230615 a = 0.996 094 85

B = 331°.787 680 b = 0.82787174

C = 342°,613052 c = 0.567 823 42

From the value 2.209 1404 for the semimajor axis of the orbit,
the second formula (32.6) yields n = 0.300171252 degree/day.

For the given date (1990 October 6.0), the time since the peri-
helion is =-22.54502 days. Hence, the mean anomaly is

M = -22.54502 x 0°.300171252 = -6°.767 367

We then find

E = -34°.026714 x = +0.250 8066
v = -04°163 310 y = +0.484 9175
r = 0,652 4867 z = +0.357 3373

The Sun's geocentric rectangular equatorial coordinates for the
same instant, and referred to the same standard equinox (2000.0),
calculated by using the complete VSOP87 theory, are

X =-0.9756732, = -0.200 3254, Zz = -0.086 8566

from which A = 0.8243689, and the light-time is T = 0.00476 day.

Repeating the calculation of the comet's position for ¢t — T,
that is for 1990 October 5.99524, we find

M= -6°768796
E = -34°.031552 x = +0.2509310
v = -04°171633 y = +0.484 9477
r = 0.6525755 z = +0.357 3712
X t+tx = -0.7247422
Y+y = +0.2846223
2+z = +0.2705146
A = 0.8242811

from which we deduce the astrometric right ascension and declination
and the elongation from the Sun :

g0 = 158°.558 965
+19°.158 496

10h34m148,2
+16°09' 31"

S 2000

Y = 40°.51
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Notes on the osculating elements

Mean orbital elements, such as those given in Chapter 30 for the
major planets, represent the elements of a mean reference orbit.
They refer to a slowly varying orbit.

For the periodic comets and the thousands of minor planets, how-
ever, no mean orbital elements are calculated. Instead, orbital ele-
ments are calculated for the 'instantaneous' orbit at a given instant
(the Epoch); these are the so-called osculating elements, and the
instant for which they are valid is the Epoch of osculation.

"Osculating elements at a particular epoch are defined as the
elements of an unperturbed elliptical orbit, referred to as the
osculating orbit, in which the position and velocity of the pla-
net at the epoch are identical with the actual position and ve-
locity of the planet in its perturbed orbit at the same instant.
The osculating elements therefore contain the effects of the per-
turbations due to the other planets, so that, unlike the mean
elements, they are subject to periodic variations., [2]

While the mean elements vary slowly with time (for instance, the
eccentricity of the mean orbit of Mars was 0.09331 in A.D. 1900 and
will be 0.09340 in A.D. 2000), the osculating elements vary rather
rapidly. These changes generally do not reflect the real changes of
the mean orbit.

As an example, let us give the following osculating elements of
minor planet Ceres for two epochs separated by only 200 days. These
elements are taken from the yearly Ephemerides of Minor Planets
(Leningrad); the elements i, w and ) are referred to the standard
equinox of 1950.0.

Epoch (TD) : 1980 Dec. 27.0 1981 July 15.0
Semimajor axis (AU) : a = 2.7663951 a = 2.7671238
Eccentricity : e = 0.0772343 e = 0.0774937
Inclination (degrees): i = 10.59878 i = 10.59815
Argument of perihelion (deg.): w = 73.89565 w = 73.90189
Long. of ascending node (deg.): = 80.10259 2 = 80.096 60
Mean anomaly (degrees): M = 319.23914 M= 2.08133
Mean motion (degrees/day) : n = 0.214 20655 n = 0.21412194

From 1980 December 27 to 1981 July 15, the semimajor axis of the
'instantaneous' orbit increased by 0.00073 AU; from this, we may
not, however, deduce that during those 200 days the mean distance of
Ceres to the Sun increased by 109000 kilometers!

On 1980 December 27, the 'instantaneous' revolution period of
Ceres was 1680.62 days (which is obtained by dividing 360° by n);
200 days later this had increased to 1681.28 days.

Neptune provides an even better illustration. While the eccentri-
city of its mean orbit is presently 0.0090, that of its osculating
orbit reached a maximum of 0.0124 in November 1964, a minimum of
0.0039 in October 1970, another maximum (0.0122) in December 1976,
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and so on. These rather large variations are not surprising: the
osculating orbit of Neptune refers to the instantaneous position
and velocity of the Sun, which itself oscillates around the bary-
center of the solar system, mainly due to the actions of the giant
planets Jupiter and Saturn. Orbital elements of Neptune referred to
that barycenter (instead of to the Sun) would show much smaller va-
riations.

Accurate ephemerides of the periodic comets and the minor planets
are obtained by numerical integration, and for these calculations
the osculating orbital elements provide starting values.

Osculating elements may be used to give the actual position and
motion of the body at the epoch of osculation, and they provide a
good approximation to its actual orbit over short periods around the

Epoch. They may not, however, be used as an unperturbed orbit over
a long period!

In order to have an idea of the increasing error of an ephemeris
calculated by using an osculating orbit as an unperturbed one, we
used the above-mentioned osculating elements of Ceres valid for 1981
July 15. The heliocentric longitude of Ceres, calculated in this
manner, was then compared with the exact one as deduced from the
work of Duncombe [3]}. It appeared that until 280 days after the
Epoch the error was smaller than 9"”. During the first 40 days, the
error was smaller than 1". The error in the calculated heliocentric
longitude reached a maximum (+8") 180 days after the Epoch, but af-
ter a few months the error AX quicky reached large negative values:

Number of
days after
1981 July 15: 0 40 80 120 160 200 240 280 320 360 400

AX (arcseconds): 0 +1 +3 +5 +7 +7 +3 -8 -26 -H2 -86

The further evolution of AX is shown in the Figure on the next
page. The oscillating curve represents the variation of the error as
a function of the time. So, in this particular case, the error does
not increase continually with time. We found the following extreme
values for the error in Ceres' heliocentric longitude:

+8" in January 1982
-708" in mid-March 1984
+864" in mid-May 1986
-825" in July 1988

+1754" in August 1990
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The error AN in the calculated heliocentric longitude of
Ceres, when osculating elements are used and the perturba-
tions by the planets are neglected.
Vertically: AN in seconds of arc.

Horizontally : the days elapsed since the Epoch, 1981 July
15.0.

The points are given at intervals of 40 days.



222 ASTRONOMICAL ALGORITHMS

The Equation of the Center

If the orbital eccentricity is small, then instead of solving the
equation of Kepler (Chapter 29) and then using formula (29.1), the
equation of the center ¢, or the difference v — M, can be found di-
rectly in terms of e and M by means of the following formula.

3
= e’ L 255 5 5 5 _ 11 4 i
c (2e + toge ) sinm + ( 5 e 24 © ) sin 2M
13 5 _ 43 oy . 103, . 1097 5 _.
+ e e ) sin 3 + 96 ©" sin 4M + e e sin SM

The result is expressed in radians, and thus should be multiplied
by 180/m or 57.29577951 in order to be converted into degrees.
The formula is derived from a series expansion [4], and has been
truncated after the term in e®. Therefore it is suitable only for
small values of the eccentricity. If the eccentricity is very small,
the terms in e’ and e® may be neglected.

The greatest error is

The formula The formula with terms
up to terms in e® e* and e’ neglected
for e = 0.03 00003 024
0.05 0.007 1.8
0.10 0.45 30
0.15 5 152
0.20 29 483
0.25 111 1183
0.30 331 2456

There exists a series expansion for the radius vector too. Its
terms up to the fifth power of the eccentricity are as follows:

r _ el _ _ 3.3 5 .5
a—l+2 e~ ge +1923)cosM
e? ek

( 2 3 ) cos 2M
_ (3.3 _ A5 5
(Se 128 € } cos 3M
A
- j; cos 4M
v} e3 cos 5M

384
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Velocity on an elliptic orbit

On an unperturbed elliptical orbit, the instantaneous velocity
of the moving body, in kilometers per second, is given by

v o= s2.1219f 2 - L
r 2a

where r is the distance of the body to the Sun, and a is the semi-
major axis of the orbit, both expressed in astronomical units.

If e is the orbital eccentricity, then the velocities at peri-
helion and at aphelion, again in km/second, are respectively

29.7847 l+e

Vp = /a 1-e
v, o 29.7847 [1-e
a -y lte

Example 32.¢c ~— For the 1986 return of periodic comet Halley, we
had [5]

a = 17.9400782 e = 0.967 27426

these osculating values being valid strictly for
the Epoch 1986 February 19.0 TD.

For this orbit, the velocities at perihelion and at aphelion are
Vp = 54.52 km/second and V; = 0.91 km/second, respectively.

At the distance r =1 AU from the Sun, the comet's velocity was
V = 41.53 km/second.

Length of the ellipse

While there is an exact formula giving the area of an ellipse
(area = TMab), there is no exact expression with a finite number of
terms and ordinary functions for the length L (the perimeter) of an
ellipse. In what follows, e is the eccentricity of the ellipse, a
its semimajor axis, and b its semiminor axis given by b = aVl -e?,

1. An approximate formula given by Ramanujan in 1914 is
L = 7 ( 3(a+bp) - /(a+3b)(3a+b))

The error is zero for a = b (that is, for a circle), increasing
to 0.41557 for e =1, that is, for an infinitely flat ellipse.
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2. Another interesting method for finding the length of an ellipse

is as follows. Let A, G and H be the arithmetic, the geometric,
and the harmonic means, respectively, of the semi-axes a and b of
the ellipse. That is,

a=23D ¢ = /ab H = —22P

Then we have 21a - 2¢ - 3H)
L e

L = 8

with an error less than 0.0017 if e < 0.88, and less than 0.017 if
e < 0.95. But the error amounts to 17 for e = 0.9997, and to 37 for

e=1.

3. A formula with an infinite series expansion is

2 2 372 N 2 6
L = Zﬂa(l—(%) ‘i— '(iza) eT -(iiiiZ) e_5— - )

The expression between brackets takes the value 0.99937 for e =
0.05, the value 0.99750 for e = 0.10, and is equal to 0.63662 = 2/7
for e=1.

4. More rapid convergence is obtained with the following formula,
where m = (a~-b)/(a+b),

2 2 2 3 2
R (1+(%) ’”2+(2i4) ’"“J'(zlx)zixa) m®

2

Example 32.d — Periodic comet Halley. Using the elements for the
return of 1986 (see Example 32.c), we find that
the length of the orbit is 77.07 AU = 11530 mil-
lions of kilometers.
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Chapter 33

Parabolic Motion

In this Chapter we give formulae for the calculation of positions of
a comet which moves around the Sun in a parabolic orbit. We will as-
sume that the elements of this orbit are invariable (no planetary
perturbations) and that they are referred to a standard equinox, for
example that of 2000.0.

We assume that the following orbital elements are given:

= time of passage in perihelion
= perihelion distance, in AU

= jinclination

= argument of the perihelion

= longitude of ascending node

DE QN
|

First, calculate the auxiliary constants A, B, C, a, b, ¢ as for
an elliptic orbit: see formulae (32.7) and (32.8). Then, for each
required position of the comet, proceed as follows.

Let t -~ T be the time since perihelijon, in days. This quantity
is negative for an instant before the time of perihelion. Calculate

- 0.03649116245
avq

The constant in the numerator is equal to 3k//2, where k is the
Gaussian gravitational constant 0.017 202 098 95.

-T) (33.1)

Then the true anomaly v and the radius vector r of the comet
are given by

tan%= s r =g (l+s?) (33.2)

where s is the root of the equation

s34+3s-w=20 (33.3)

225
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It should be noted that, for an instant before the time of peri-
helion, s is negative and v is between -180° and 0°; after the
perihelion, s > 0 and v is between 0° and +180°. At the instant of
passage through perihelion, s =0, v =0° and r=gq.

There are several ways to solve equation (33.3), which is called
Barker's equation.

1. The equation can easily be solved by iteration; this algorithm
has the author's preference, because the iteration formula is
simple, the convergence is rapid, no trigonometric functions or
cubic roots are involved, and the procedure is valid for positive
as well as negative values of (t - T), and for t =T (or s =0) too.

One may start from any value for s; a good choice is s =0.
A better value for s is

25 + W
EXEENY] (33.4)

This calculation is repeated until the correct value of s is ob-
tained. It should be noted that in expression (33.4) the cube of s
must be calculated; if s is negative, this operation is not possi-
ble on some calculating machines; when this is the case, calculate
sxsxs instead of s3,

2. Instead of solving equation (33.3) by iteration, s can be obtai-
ned directly as follows (J. Bauschinger, Tafeln zur Theoretischen
Astronomie, page 9; Leipzig, 1934):

tan B = 2 = s54.807 791 ~2X2
t-T
3
tan Y = tan-% (33.5)
= —2
tan 27y

The constant 54.807 791 is equal to 251?_, where k is the Gaus-
sian gravitational constant.

In this method, no iteration is performed, but two problems can
occur :

— at the time of passage through periheljon, t - T is zero, hence W
is zero, and 2/W becomes infinite. However, in that case we have
immediately v = 0° and r =g, but the possible occurrence of this
case must be anticipated in the computer program;

— before the perihelion we have W < 0, whence tan B 1is negative.
But in that case, tan B/2 is negative too, and computers cannot
calculate the cubic root of a negative quantity. This difficulty can
be avoided by replacing W by its absolute value in the first for-
mula (33.5). At the end of the calculation, the sign of s should
then be changed accordingly.
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For instance, in BASIC the formulae (33.1) and (33.3) can be pro-
grammed as follows, where T stands for the number of days t-T
since perihelion :

FT=0 THEN ....

.03649116245 * T/{Q * SQR(Q))
ATN (2/ABS(W))
2/TAN(2*ATN(TAN(B/2)~(1/3)))
FT<O THEN $=-§

nnan

I
W
B
S
I

3. The following method is easier and does not use trigonometric
functions. All expressions under the root signs are positive.

3
Yy = G+ /62 + 1 s=y—% (33.6)

G =

Nix

When s is obtained, v and r can be found by means of (33.2),
after which the calculation continues as for the elliptic motjon,
formulae (32.9) and (32.10), with the same precept to take the
effect of light-time into account.

The first formula (33.2) will give v/2 between -90 and +90 deg-
rees, the range of the arctangent function of the computer languages.
That will give v in the correct quadrant, between -180° and +180°,
so no additional check will be required.

In the parabolic motion, e =1 while a and the period of revo-
lution are infinite; the mean daily motion is zero, and therefore
the mean and eccentric anomalies do not exist (in fact, they are
2er0).

Example 33.a — Calculate the true anomaly and the distance to the
Sun of comet Helin-Roman (1989s = 1989 IX) for
1989 October 31.0 TD, using the values

T = 1989 August 20.29104 TD
g = 1.3245017

of a parabolic orbit calculated by B.G. Marsden
(Minor Planet Circular No. 16001, 1990 March 11).

For the given date (1989 October 31.0), the time from perihelion
is t-1T = +71.70896 days. Hence, by formula (33.1),

W= +1,716 652 31.

Starting from the value s =0, we obtain the following succes-
sive approximations by means of the iteration formula (33.4) :
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0.000 0000
0.5722174
0.5251685
0.524 2029
0.524 2025

Hence, s = +0.5242025, and consequently

v = +55°.32728 r = 1.688 459

I1f, instead of the iteration procedure, formulae (33.6) are used,
we obtain successively

G = 0.858 326 155
Y = 1.295879 323

s =vY-1/y = 0.5242025, as before.




Chapter 34

Near-parabolic Motion

An eccentricity of exactly 1 means that the orbit is parabolic; in
that case, it is easy to calculate the position of the body for a
given instant (see Chapter 33). If the orbit has a high eccentricity
(say, 0.98 to 1.1), but different from 1, it is more troublesome to
deal with. An eccentricity greater than 1 means the orbit is hyper-
bolic.

The German astronomer Werner Landgraf has given an interesting
program in BASIC [1]}, based on Karl Stumpff's work Himmelsmechanik,
Vol. I (Berlin, 1959). Hereafter we give Landgraf's program, in a
slightly modified form.

First, one calculates

- Kk [lte _1l-e
Q 2q q ¥ 1 +e

where, as before, k is the Gaussian gravitational constant, e is
the eccentricity of the orbit, and g is the perihelion distance in
astronomical units.

Then solve the following equation iteratively for s

3 5 7
s =0t ~ (1~ Zy)ST + oy (2—3y)% - Y2(3—Ay)—s-7— FO
(34.1)

where t is the number of days before (-) or after (4) the perihe-
lion. Begin by inserting into the right-hand side of the equation
the value of s obtained for an orbit which would be precisely para-
bolic [with the value of W of formula (33.1) put equal to Qt/3].
This evaluation leads to an improved s, which is used in another
iteration, and so on until the value of s ceases to change.
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Once the final value of s is found, the true anomaly v and the
distance r to the Sun are found from

v g(l+e)
tan — = s r = ——
2 l+ecosv
The calculation of geocentric places can then be performed as for
the elliptic and the parabolic motions.

Here is Landgraf's program in BASIC, slightly modified by us. It
is valid for highly ecceatric elliptical orbits (e slightly less
than 1), for slightly hyperbolic orbits (e slightly larger than 1),
as well as for an orbit which is exactly parabolic. The computer is
assumed to be working in radians.

10 P1=4%ATN(1) : R1=180/P1
12 K =0.01720209895
14 D1=10000 : C=1/3 : D=1E-9

16 INPUT "PERIHELION DISTANCE = "; Q

18 INPUT "ECCENTRICITY = "; 0

20 QL = K¥SQR((1+E0)/Q)/(2%Q) : G = (1-E0)/(1+E0)
22 INPUT "DAYS FROM PERIHELION = "; T

24 IF T<>0 THEN 28
26 R=Q : V=0 : GOTO 72

28 Q2 = QL*T
30 S =2/(3%ABS(Q2))
32 = 2/TAN(2*%ATN(TAN(ATN(S)/2)"C))

34 IF T<O THEN S=-§

36 IF EO =1 THEN 66

38 L=0

40 SO=S : Z=1:Y=S*%S : Gl = -Y*S
42 Q3 = Q2 + 2%GxS*Y/3

46 7=71+1

46 Gl = -GlxGxY

48 71 = (Z-(Z+1)*G)/(2%7+1)

50 F =2Z1x%G1

52 Q3 =Q3+F

54 1F Z>50 OR ABS(F) > D1 THEN 78

56 IF ABS(F)>D THEN 44

58 L=L+1 : IF L>50 THEN 78

60 S1 =135 : S= (2+5%S5%5/3 + Q3)/(S*S+1)
62 IF ABS(S~-S1)>D THEN 60

64 IF ABS(S=-S0)>0D THEN 40

66 V= 2%ATN(S)

68 R=Q%x(1+E0)/(1+ EOXCOS(V))

70 IF V<O THEN V=V + 2%p1

72 PRINT "TRUE ANOMALY = "; V%Rl

74 PRINT "RADIUS VECTOR (A.U.) ="; R
76 PRINT : GOTO 22

78 PRINT "NO CONVERGENCE"

80 PRINT : 6OTO 22
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Some comments about this program :

Line 10 : the first formula is a trick to obtain the number .

Line 12 : the Gaussian gravitational constant k.

Line 14 : the number D = 1079 adjusts to suit the computer's preci-
sion. If necessary, one may use 1078 or 10-10,

Line 26 : when t =0 (the body being exactly in perihelion), we
have r =g and v = 0°,

Line 36 : 1if the orbit is exactly parabolic, the value of s has
been found.

Line 54 : if in formula (34.1) more than 50 terms are needed, or if
these terms become too large, there is no convergence.

Line 56 : as long as a term of formula (34.1) is not small enough,
the next term should be calculated.

Line 58 : if after 50 iterations no result has still been found,

the calculation must be halted.

Lines 60 and 62 : solving equation (34.1) by iteration. This is an
iteration inside of an iteration!

As an exercise, try to calculate the following cases :

Data Results

perihelion ericit d true distance

distance sccentricity ays anomaly to the Sun

g (AU) e t v (°) r (AV)
____________________________________________________ L
0.921326 1.00000 138.4783 102.744 26 2.364 192
0.100 000 0.98700 254.9 164,500 29 4.063777
0.123 456 0.999 97 -30.47 221.91190 0.965 053
3.363 943 1.05731 1237.1 109.40598 10.668 551
0.587 1018 0.967 2746 20 52.853 31 0.729 116
0.587 1018 0.967 2746 o] 0 0.587 1018

After having calculated some cases, you will notice that the cal-
culation time is longer as |t| is larger, that is, as the body is
farther away from the perihelion. The calculation time is longer too
as e differs more from unity. The table on the next page mentions
some calculation times on the HP-85 microcomputer, together with a
rounded value of the true anomaly v, and the number I of iterations.
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Calculation
time in

q e t seconds v L
0.1 0.9 10 14 126° 17
20 47 142° 30
30 no convergence - -
0.1 0.987 10 4 123° 7
20 5 137° 8
30 6 143° 10
60 9 152° 12
100 14 157° 16
200 28 163° 23
400 87 167° 38
500 no convergence - -
0.1 0.999 100 3 156° 6
200 4 161° 7
500 5 166° 8
1000 7 169° 10
5000 18 174° 18
1 0.999 99 100 000 2 172°.5 4
10 000 000 5 178°.41 8
14 000 000 6 1789°.58 9
17 000 000 7 178°.68 9
18 000 000 no convergence - -

For ¢ =0.1 and e = 0.9, the calculation takes 47 seconds for
t = 20 days, and there is no convergence for t = 30 days.

For ¢ = 0.1 and e = 0.999, there is no trouble up to t = 5000
days.

For g =1 and e = 0.99999, there is no trouble even for t =
17 million days. This is 465 centuries after the perihelion time;
the object's distance from the Sun is then 7220 astronomical
units — at least in theory!

Reference

1. Sky and Telescope, Vol. 73, pages 535-536 (May 1987).



Chapter 35

The Calculation of some Planetary
Phenomena

There are two basically different methods for calculating planetary
phenomena such as the greatest elongations of Venus, or the time of
an opposition of Mars:

(i) either by comparing accurate positions of the planet with those
of the Sun;

(ii) or by using formulae where a mean value is corrected by a sum
of periodic terms.

The first method has the advantage of giving very accurate re-
sults, because use is made of very accurate positions of the bodies.
It has the inconvenience, however, of requiring the availability or
the calculation of these accurate ephemerides.

With the second method, the calculation can be performed easily
and rapidly for any year. The results, while not so accurate as
those of the first method, are still good enough for many applica-
tions, such as historical research, or even as a first approximation
for a more accurate calculation.

In this Chapter, we provide formulae for calculating several con-
figurations involving the planets Mercury to Neptune: oppositions
and conjunctions with the Sun, and greatest elongations.

Oppositions and conjunctions with the Sun
From the proper line in Table 35.A, take the values of A, B, M,
and M.

Let Y be an approximate time of the required phenomenon, expres-
sed as years and decimals. For instance, 1993.0 means the beginning
of the year 1993, 2028.5 denotes the middle of the year 2028, etc.
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Then find the integer k nearest to

65. + 1721060 - A
365.2425Y - 60 (35.1)

It is important to note that Xk must be an integer. Non-integer
values of k would yield meaningless results. Successive values of
k will provide the data for the successive events, the value k=0
corresponding to the first one after 2000 January 1. For years pre-
ceding A.D. 2000, k takes negative values.

Then calculate
JDE, = 4 + kB, M= Mg+ kM,

JDE, is the Julian Ephemeris Day corresponding to the time of the
mean planetary configuration (that is, calculated from circular or-
bits and uniform planetary motions), and M is the mean anomaly of
the Earth at that instant.

M is an angle expressed in degrees and decimals. Depending on
the type of the calculating machine or programming language, it may
be necessary or desirable to reduce the angle to the range 0-360
degrees, by adding or subtracting a convenient multiple of 360, and
to convert the result into radians.

Find the time T, expressed in centuries from the beginning of the
year 2000, from

JDE, = 2451 545

T = —Femme =

36525

T is positive after the beginning of A.D. 2000, negative before.

For the planets Jupiter to Neptune, additional angles are requi-
red. Expressed in degrees, these angles are :

for Jupiter : a= 82.74 + 40.76T
for Saturn : a= 82.74 + 40.76T
b= 29.86 + 1181.36T
c = 14.13 + 590.68T
d = 220.02 4 1262.87T
for Uranus : e = 207.83 + 8.51T
f = 108.84 + 419.96T
for Neptune : e = 207.83 + 8.51T
g = 276.74 + 209.98T

The time JDE of the true configuration is obtained by adding to
JDE, a correction which is given in Table 35.B as a sum of periodic
terms which are functions of the angle M. By reason of the secular
variations of the planetary orbits, the coefficients of these perio-
dic terms are slowly varying with time, whence the presence of terms
in T and 72 in Table 35.B.
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For instance, for an inferior conjunction of Mercury, the correc-
tion (in days) is

+ 0.0545 + 0.0002T

(-6.2008 + 0.0074T + 0.0000372) sin M
(-3.2750 - 0.0197 7 + 0.00001 T2) cos M
(0.4737 - 0.0052T - 0.0000172) sin 2M
etc ....

+ + 4+ +

The corrected instant obtained in this way is expressed as a Ju-
lian Ephemeris Day (JDE), hence in the scale of Dynamical Time. This
can be reduced to the standard Julian Day, JD, based on the Univer-
sal Time, by subtracting the quantity AT expressed in days (see
Chapter 9). However, between the years 1500 and 2100, the correction
- AT can be neglected for our purposes.

Finally, from the JD the corresponding calendar date can be ob-
tained by means of standard procedures (see Chapter 7).

Example 35.a = Calculate Mercury's inferior conjunction that is
nearest to 1993 October 1.

From Table 35.A, for Mercury, Inferior conjunction, we have

A = 2451612.023
B = 115.877 4771
My = 63.5867

M, = 114.208 8742

]

October 1 is three quarters of a year since January 1, hence
1993 October 1 = 1993.75 = Yy, and expression (35.1) yields the
value -20.28, whence k = -20. (Remember that k must be an integer.)
Then

JDE, 2449 294,473
M = -2220°.5908 = +299°.4092
T = -0.06162

The sum of the terms in the relevant part of Table 35.B (Mercury,
Inferior conjunction) is +3.171, whence

JDE = JDE, + 3.171 = 2449297.644,

which corresponds to 1993 November 6, at 3h TD.

Rounded to the nearest integer hour, this is indeed the correct
instant.
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Example 35.b — Find the instant of Saturn's conjunction with the
Sun in the year 2125.

From Table 35.A, for Saturn, Conjunction, we have

A = 2451681.124
B = 378.091 904
Mo = 131.6934

My = 12.647 487

For v = 2125.0 (i.e., the beginning of the year 2125), expression
(35.1) gives the value +120.39. Since we are searching the first
Saturn-—Sun conjunction after the beginning of the year 2125, ve
take k = +121, not +120. Then

JDE, 2497 430.244
M 1662°.0393 = 222°,0393
T = +1.25627

and for Saturn we have to calculate the following additional angles:
a = 133°.95, b = 73°97, c = 36°.18, d = 6°.53

The sum of the terms in the relevant part of Table 35.B (Saturn,
Conjunction with Sun) is +7.659, whence

JDE = JDE, + 7.659 = 2497 437.903,

which corresponds to 2125 August 26, at 10B TD.

The correct instant, calculated with a more accurate method, is
2125 August 26, at 11h TD.

Greatest elongations of Mercury and Venus

To calculate the times and the values of the greatest elongations
of Mercury or Venus, we start from the nearest inferior conjunction.
So we calculate k, JDE,, M and T as explained before. We do not
calculate the instant of the true inferior conjunction; instead, we
use the periodic terms given in Table 35.C to find the correction
(in days) to Mercury's or Venus' mearn inferior conjunction, to ob-
tain the time of greatest eastern or western elongation. In the same
table, periodic terms are provided to find the value of this grea-
test elongation.

Do not forget that, if the planet is east from the Sun, it is
visible in the evening in the west; if the elongation is west, the
planet is visible in the morning in the east.

The value of the greatest elongation from the Sun is expressed in
degrees and decimals. It concerns the maximum angular distance from
the planet to the center of the Sun's disk, not the greatest diffe-
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rence between the geocentric ecliptical longitudes of the two bo-
dies. There is no 'official’ definition for the elongation of a pla-
net to the Sun, and two different definitions could be considered :

(a) the angular distance between the object and the center of the
solar disk;

(b) the difference between the geocentric longitudes of the object
and the center of the solar disk.

Both definitions are used in the astronomical literature. Defini-
tion (a) has been used in the Astronomical Ephemeris since its be-
ginning in 1960, and from 1981 onwards in its successor, the Astro-
nomical Almanac. It is this definition we prefer. For example, for
the visibility of Venus near its inferior conjunction, the important
factor is not the longitude difference with the Sun, but the angular
separation.

The French astronomers, however, use definition (b), for instance
in their Annuaire du Bureau des Longitudes. On page 275 of the vo-
lume for 1990 we read:

"Les plus grandes élongations des planétes inférieures: la
différence des longitudes géocentriques de la planéte et
du Soleil est maximale.,,

As a consequence, the results will differ somewhat according as
one uses definition (a) or (b). For example, for Mercury's greatest
elongation of 1990 August 11: the difference between the geocentric
ecliptical longitudes of the Sun and Mercury reached its maximum va-
lue (27°22') at 15M UT, as mentioned on page 277 of the Annuaire du
Bureau des Longitudes for 1990, but the maximum angular separation
took place at 21M and was equal to 27°25'.

Example 35.¢ — Find the instant and the value of Mercury's grea-
test western elongation in November 1993.

We start from the inferior conjunction of November 1993, for
which we found in Example 35.a:

JDE. = 2449 294.473, M = 299° 4092, T =-0.06162.

With ' ese values of M and T, we find from the relevant part of
Table 35 . (Mercury, greatest western elongation) :

co- :ction = +19.665 days, elongation = 19°.7506.
Hence. the time of Mercury's greatest western elongation is
Jbé = JDE, + 19.665 = 2449314.14

whic* - responds to 1993 November 22, at 150 TD.

lue of this maximum elongation is 19°.7506 = 19°45'.
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The accuracy of the results

It is evident that the expressions given in Tables 35.B and 35.C
are valid only for a limited period of time, namely for a few mil-
lennia before and after A.D. 2000, and not for millions of years!
Consequently, do not use the method given in this Chapter before the
year -2000, nor after A.D. 4000.

For modern times, say between A.D. 1800 and 2200, the instants
obtained for the phenomena involving Mercury and Venus will be less
than 1 hour in error. The error can reach 2 hours in the case of
Saturn, Uranus and Neptune, 3 hours for Mars, and 4 hours for Ju-
piter.

It is expected that the maximum possible error will be somewhat
larger near the years -2000 and +4000. On the other hand, if the
calculations are performed for epochs near A.D. 2000, say between
1900 and 2100, then the terms in T2 may safely be ignored.

Exercises

Check your program with the following cases; all times are in TD.

Mercury inferior conjunction 1631 Nov 7 7h (a)
Venus inferior conjunction 1882 Dec 6 7B (b)
Mars opposition 2729 Sep 9 3h (c)
Jupiter opposition -6 Sep 15 70 (d)
Saturn opposition -6 Sep 14 gh (a)
Uranus opposition 1780 Dec 17 140 (e)
Neptune opposition 1846 Aug 20 4 (£)

(a) the first observed transit of Mercury over the solar disk
(by Gassendi, at Paris).

(b) the last transit of Venus before that of A.D. 2004.
(c) a perihelic opposition of Mars.

(d) because Jupiter and Saturn were in opposition with the
Sun with a time difference less than one day, there
occurred a triple conjunction between these two planets
in that year.

(e) three months before Uranus' discovery by William Her-
schel.

(f) one month before Neptune's discovery.
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Chapter 36

Pluto

As for the numerous minor planets (see Chapter 32), no analytical
theory for the motion of Pluto is available. However, expressions
for an accurate representation of the planet's motion (1950.0 coor-
dinates) for the years 1885 to 2099 have been constructed by Goffin,
Meeus and Steyaert [1]. The coefficients of the periodic terms were
determined by the least-squares method, on the basis of a numerical
integration of Pluto's heliocentric motion performed by E. Goffin.
Perturbations by the first eight major planets were included. This
integration itself was based on the osculating elements by Seidel-
mann et al. [2] which were obtained through a numerical integration
fitted to all available observed positions of Pluto, spanning the
years 1914 to 1979.

Using Goffin's numerical integration again, we have repeated the
calculation of the periodic terms, but now referring Pluto's helio-
centric longitude and latitude to the new standard equinox J2000.0
instead of B1950.0. The results are given in Table 36.A.

Method of calculation

Calculate, by means of formula (21.1), the time T in Julian cen-
turies from the epoch J2000.0, and then the following angles (in
degrees) :

J 34.35 + 3034.9057 T
S 50.08 + 1222.11387T
P = 238,96 + 144.96007T

Then calculate the periodic terms as given by Table 36.A. Here,
each argument a is a linear combination of the angles J, S, P,
namely

a=iJ+ jS + kP
and the contribution of each argument is

Asina 4+ Bcosa

247
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For instance, on the 13th line we read the numbers 0, 2, -1, so
here the argument is o = 25 - P, and for the latitude the contri-
bution is -94 sin a + 210 cos a.

In Table 36.A, the numerical values of the coefficients A and B
are given in units of the sixth decimal of a degree in the case of
the longitude and the latitude, and in units of the seventh decimal
(astronomical units) for the radius vector.

The heliocentric longitude 1, latitude b (in degrees), and the
radius vector r of Pluto are then given by

1 = 238.956785 + 144.96T + sum of periodic terms in longitude
= -3.908202 + sum of periodic terms in latitude
r = 40.7247248 4+ sum of periodic terms in radius vector

The longitude and latitude obtained by this method are heliocen-
tric, not barycentric, and they are referred to the standard equinox
of J2000.0.

Calculated in this way, 1 will be less than 0'".6 in error, b less
than 0".2, and the radius vector less than 0.00002 AU, with respect
to the numerical integration on which this representation of Pluto's
motion is based. It is important to note, as has been said, that the
method given here is not valid outside the period 1885-2099.

To find the geocentric astrometric 2000.0 equatorial coordinates
o and § of Pluto:

— find the geocentric 2000.0 rectangular equatorial coordinates X,
¥, 2 of the Sun (see Chapter 25);

— find those of Pluto by

X = r cosl cosb
y =r (sinl1 cos b cos € - sinb sin €) (36.1)
z = r (sinl cos b sin € + sin b cos £)

where € is the mean obliquity of the ecliptic at epoch J2000.0.
We have

0.397777156

0.917 482062

!

sin €
cos €

]

— find o and 6, and Pluto's distance A to the Earth, by means of
formulae (32.10).

However, the effect of light-time should be taken into account.
See Chapter 32 and formula (32.3). Hence, to obtain the geocentric
o and &, the values of 1, b, r should be calculated for an instant
which is earlier than the given instant by the light-time T.

It may seem strange that in our solution the mean longitudes of
Uranus and Neptune are not needed. The reason is that the mean mo-
tion of Uranus is almost exactly twice that of Neptune, or three
times that of Pluto. For this reason, the argument 2N - P, for in-
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TABLE 36.A
Periodic terms for the heliocentric coordinates of Pluto

(ol BN B NS I S

Argument Longitude Latitude Radius vector

J 8§ P A B A B A B

0 0 1 {-19798886 19848454 | -5453098 —14974876 66867334 68955876
0 0 2 897499 —4955707 3527363 1672673 } —11826086 —-333765
0 0 3 610820 1210521 | -1050939 327763 1593657 -1439953
0 o 4 -341639 -189719 178691 —~291925 -18948 482443
0 0 S5 129027 -34863 18763 100448 66634 —-85576
0 Q0 6 —-38215 31061 -30594 ~25838 30841 -5765
0 1-1 20349 -9886 4965 11263 -6140 22254
0 1 0 —4045 -4904 310 -132 4434 4443
o 1 1 -5885 -3238 2036 —947 -1518 641
0 1 2 -3812 3011 -2 -674 -5 792
0 1 3 -601 3468 -329 -563 518 518
0 2 -2 1237 463 ~64 39 i -221
0 2 -1 1086 -911 -94 210 837 -494
0 2 0 595 -1229 -8 -160 -281 616
1 -1 0 2484 —485 -177 259 260 -395
1 -1 1 839 -1414 17 234 ~191 ~396
1 0-3 —-964 1059 582 -285 -3218 370
1 0 -2 -2303 -1038 —-298 692 8019 -7869
1 0 -1 7049 747 157 201 105 45637
1 0 0 1179 -358 304 825 8623 8444
1 0 1 393 -63 -124 -29 -896 - 801
1 0 2 111 ~268 15 8 208 -122
1 0 3 -52 -154 7 15 -133 65
1 0 4 -78 -30 2 2 -16 1
1 1-3 -34 -26 4 2 ~-22 7
1 1-2 —43 1 3 Q -8 16
1 1 -1 -15 21 1 -1 2 9
1 1 0 -1 15 0 -2 12 5
1 1 1 4 7 1 0 1 -3
1 1 3 1 5 1 -1 1 0
2 0 -6 8 3 -2 ~3 9 5
2 0 -5 -3 6 1 2 2 -1
2 0 -4 [} -13 -8 2 14 10
2 0 -3 10 22 10 -7 -65 12
2 0 -2 -57 -32 0 21 126 —-233
2 0 -1 157 -46 8 5 270 1068
2 0 0 12 -18 13 16 254 155
2 0 1 -4 8 -2 -3 -26 -2
2 0 2 -5 0 0 0 7 0
2 0 3 3 4 0 1 =11 4
3 0-2 -1 -1 0 1 4 -14
3 0 -1 [} -3 0 0 18 35
3 0 0 -1 -2 0 1 13 3
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stance, where N is the mean longitude of Neptune, has almost exactly
the same period as 2P. The small difference could not have been de-
tected by our investigation based on the rather short interval of
214 years. Therefore, Table 36.A does not contain the argument

2N - P; the effects of the terms with this argument are included in
the terms with argument 2P. For the same reason, there are no terms
in s-4pP, s-3P, S-2P, J~-5P, J- 4P, and 2S5 - 3P : they have
almost the same period as 4P, 5p, 6P, 2S-P, 2S, and J-S+P,
respectively. '

Example 36.a — For 1992 October 13.0 TD = JDE 2448 908.5, find

(1) the geometric heliocentric coordinates of Pluto;
(2) its geocentric astrometric coordinates « and §.

(1) We find
T = -0.072183 4360
J = -184°,719 921
S = -38°.136373
P = 228°.4G6289
Sum of periodic terms in longitude : + 4247019
in latitude : + 18 495 889
in radius vector : -110133423
from which
1 = 228°.493074 + 4°.247019 = 232°.74009
b = -3°908202 + 18°.495889 = +14°.587 69
r = 40.7247248 - 11.0133423 = 29.711383 AU

(2) For the given instant, the Sun's 2000.0 rectangular equatorial
coordinates are (from Example 25.b)

X = -0.937 3959
Y -0.3131679
2 = -0.1357792

Using Pluto's coordinates 1, b, r found above, formulae (36.1)
give

x = —~17.408 3314
y = —-23.9731135
z = - 2.237 4336

whence, by formulae (32.10) and (32.3),
A = 30.529024 AU and T = 0.17632 day.

(This value of A is Pluto's true distance to the Earth).

We now repeat the calculation of the planet's heliocentric coor-
dinates for 1992 October 13.0 - 0.17632 = October 12.82368.
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The results are

1 = 232°,73887
b = +14°,58788
r = 29.711366
whence
x = -17.408 7937 A = 30.529017
y = -23.9727795 T = 0.17632 day
z = - 2,237 1895

We obtain for T the same value as before, so no new iteration is
needed.

The 2000.0 astrometric coordinates of Pluto for 1992 October 13.0
TD are then found by means of (32.10) :
232°.93172 = 153174356
-4°.45800 = -4°27'29"

o
§

Mean orbital elements of the orbit of Pluto, near A.D. 2000 :

a = 39.543 AU

e = 0.2490

i= 17°140

¢ = 110°.307 » 2000.0
w = 113°.768

References

1. E. Goffin, J. Meeus, and C. Steyaert, 'An accurate representation
of the motion of Pluto', Astronomy and Astrophysics, Vol. 155,
pages 323-325 (1986).

2. P.K. Seidelmann, G.H. Kaplan, K.F. Pulkkinen, E.J. Santoro, and
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Chapter 37

Planets in Perihelion and Aphelion

The Julian Day corresponding to the time when a planet is in peri-
helion or in aphelion can be found by means of the following for-
mulae :

Mercury JDE = 2451 590.257 + 87.969 34963 k - 0.000 000 0000 k2
Venus JDE = 2451738.233 + 224.7008187 k - 0.000000 0327 k2
Earth JDE = 2451547.507 + 365.2596358 k + 0.0000000158 k2
Mars JDE = 2452195.026 + 686.9957843 k - 0.0000001187 x2
Jupiter JDE = 2455636.938 + 4332.897090 k + 0.000 1368 k2
Saturn JDE = 2452830.11 + 10764.21731 k + 0.000826 X2
Uranus JDE = 2470213.5 + 30694.8767 k — 0.005 41 k2

Neptune JDE = 2468895.7 + 60190.32 Kk + 0.03175k?

where k is an integer for perihelion, and an integer increased by
exactly 0.5 for aphelion.

Any other value for k would give a meaningless result!

A zero or a positive value of k will give a date after the be-
ginning of the year 2000. If k < 0, one obtains a date earlier than
A.D. 2000.

For example, k = +14 and k = -222 give passages through perihe-
lion, while k = +27.5 and k = -119.5 give aphelion passages.

An approximate value for k can be found as follows, where the
'vear' should be taken with decimals, if necessary :

Mercury k = 4.15201 (year - 2000.12)
Venus k = 1.62549 (year - 2000.53)
Earth k = 0.99997 (year - 2000.01)
Mars k = 0.53166 (year - 2001.78)

253
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Jupiter k = 0.08430 (year - 2011.20)
Saturn k = 0.03393 (year - 2003.52)
Uranus k = 0.01190 (year — 2051.1)
Neptune k = 0.00607 (year — 2047.5)

Example 37.a — Find the time of passage of Venus at perihelion
nearest to 1978 October 15, that is 1978.79.

An approximate value of k is
1.62549 (1978.79 - 2000.53) = -35.34

and, since k must be an integer (perihelion!), we take k = -35.
Putting this value in the formula for Venus, we find

JDE = 2443873.704,

which corresponds to 1978 December 31.204 = 1978 December 31, at
5h Dynamical Time.

Example 37.b — Find the time of passage of Mars through aphelion
in A.D. 2032.

Taking 'year' = 2032.0, we find k = +16.07. Since k must be an
integer increased by 0.5 (aphelion!), the first aphelion of Mars
after the beginning of the year 2032 occurs for k = +16.5.

Using the formula for Mars, this value of k gives
JDE = 2463 530.456,

which corresponds to 2032 October 24.956 or 2032 October 24, at
23h Dynamical Time.

It is important to note that the formulae for the calculation of
JDE given above are based on unperturbed elliptic orbits. For this
reason, the instants obtained for Mars can be a few hours in error.

Due to the mutual planetary perturbations, the instants for Jupi-
ter, calculated by the method described here, may be up to half a
month in error. For Saturn, the error may be larger than one month.

For instance, putting k = —-2.5 in the formula for Jupiter gives
1981 July 19 as the date of an aphelion passage, while the correct
date is 1981 July 28. For Saturn, k = -2 gives 1944 July 30, while
the planet actually reached perihelion on 1944 September 8.

The error would be even larger for Uranus and Neptune. For these
planets, the formulae are given merely for completeness.

Accurate times can be obtained by calculating the value of the
planet's distance to the Sun for several instants near the expected
time, and then finding when this distance reaches a maximum or a
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minimum. Here are the dates when Saturn (in the period 1920-2050)
and Uranus (1750-2100) are in perihelion (P) or in aphelion (A).
After the date, the distance to the Sun in astronomical units is
given. These data have been calculated by means of P. Bretagnon's
complete VSOP87 theory.

Saturn Uranus
A 1929 Nov 11 10.0468 A 1756 Nov 27 20.0893
p 1944 Sep 8 9.0288 p 1798 Mar 3 18.2890
A 1959 May 29 10.0664 A 1841 Mar 16 20.0976
p 1974 Jan 8 9.0153 p 1882 Mar 23 18.2807
A 1988 Sep 11 10.0444 A 1925 Apr 1 20.0973
P 2003 Jul 26 9.0309 p 1966 May 21 18.2848
A 2018 Apr 17 10.0656 A 2009 Feb 27 20.0989
p 2032 Nov 28 9.0149 P 2050 Aug 17 18.2830
A 2047 Jul 15 10.0462 A 2092 Nov 23 20.0994

The case of Neptune is peculiar. This planet has a slow motion
and a small orbital eccentricity. On the other hand, the Sun is os-
cillating around the barycenter of the solar system, mainly due to
the actions of Jupiter and Saturn. Consequently, the distance of
Neptune to the Sun (not to the barycenter of the solar system) can
reach a double maximum or minimum.

For example, we had the following extreme values for Neptune's
radius vector :

minimum 1876 Aug. 28 r = 29.8148 AU
maximum 1881 Dec. 12 29.8213
minimum 1886 July 11 29.8174

Half a revolution later, near the aphelion part of the orbit, we
had the following extrema :

maximum 1959 July 13 r = 30.3317 AU
minimum 1965 Oct. 6 30.3227
maximum 1968 Nov. 21 30.3241

The maximum of 1881 was not an aphelion, because Neptune was, at
that time, near the perihelion of its orbit. Similarly, the minimum
of 1965 did not correspond to a perihelion. The author has coined
the new terms apheloid (= 'which resembles an aphelion') and peri-
heloid for these odd maximum and minimum, respectively [1].

Figure 1 shows the variation of Neptune's distance to the Sun
from 1954 to 1972. Note the principal aphelion (1), the periheloid
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AU

Figure 1

30.33
The variation of the
distance of Neptune
to the Sun, 1954 to
1972.

30.32

29.82 | 13,

AU L Figure 2

T The variation of the
distance of Neptune
29.81F o 2
to the Sun, 2038 to
2054.

2038
2040 F
2042 F
2044 f
2046
2048 r
2050 f
2052 f
2054 f

(2), and the secondary aphelion (3). Half a revolution later, we
have the situation pictured in Figure 2; this will be almost a
'limiting case': the principal perihelion (1') will occur in 2042,
vwhile in 2049-2050 the distance to the Sun will decrease only very
slightly from the apheloid (2') to the secondary perihelion (3'),
as follows:

minimum 2042 Sep. 5 r = 29.8064 AU
maximum 2049 Oct. 24 29.816711
minimum 2050 June 25 29.816696
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For the Earth, it is important to note that the formula given to
calculate JDE is actually valid for the barycenter of the Earth-
Moon system. Due to the action of the Moon, the time of least or
greatest distance between the centers of Sun and Earth may differ
from that for the barycenter by more than one day [2}. For instance,
k = -10 in the formula for the Earth yields JDE = 2447 894.911,
which corresponds to 1990 January 3.41, while the correct instant
for the Farth is 1990 January 4, at 17h TD.

The values obtained (for the Earth only) can be corrected as fol-
lows. Calculate the angles, in degrees,

Ay = 328.41 + 132.788585k
Ay = 316,13 + 584.903153 k
A, = 346.20 + 450.380738«k
a,= 136.95 + 659.306737 k
Ag = 249.52 + 329.653368«k

Remember that % must be an integer for a perihelion, or an inte-
ger increased by 0.5 for an aphelion. Then we have the following
correction terms, in days :

perihelion aphelion
+1.278 -1.352 X sin A,
-0.055 +0.061 sin A,
-0.091 +0.062 sin A,
-0.056 +0.029 sin A,
-0.045 +0.031 sin Ag

Calculated in this way, the times for the years 1980-2019 have a
mean error of 3 hours. Exceptionally, the error amounts to 6 hours.

For instance, for k = -10, we obtain a correction of +1.261 day,
so the value JDE = 2447 894.911 mentioned above is corrected to
2447 896.172, which corresponds to 1990 January 4, at 16" TD, which
is much closer to the exact value.

Table 37.A gives the times of the passages of the Earth in peri-
helion and aphelion for the years 1991 to 2010, to the nearest 0.01
hour, together with the distance in AU between the centers of Sun
and Earth. These data have been calculated accurately, using the
complete VSOP87 theory, not the approximate method given above.
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TABLE 37.A

Perihelion and Aphelion of the Earth, 1991 -2010
Instants in Dynamical Time

Year Perihelion Aphelion
h h
1991 Jan. 3 3.00 0.983 281 July 6 15.46 1.016 703
1992 3 15.06 324 3 12.14 740
1993 4 3.08 283 4 22.37 666
1994 2 5.92 301 5 19.30 724
1995 4 11.10 302 4 2.29 742
1996 Jan. 4 7.43 0.983 223 July 5 19.02 1.016 717
1997 1 23.29 267 4 19.34 754
1998 4 21.28 300 3 23.86 696
1999 3 13.02 281 6 22.86 718
2000 3 5.31 321 3 23.84 741
2001 Jan. &4 8.89 0.983 286 July 4 13.65 1.016643
2002 2 14.17 290 6 3.80 688
2003 4 5.04 320 4 5.67 728
2004 4 17.72 265 5 10.20 694
2005 2 0.61 297 5 4.98 742
2006 Jan. &4 15.52 0.983 327 July 3 23.18 1.016 697
2007 3 19.74 260 6 . 23.89 706
2008 2 23.87 280 4 7.71 754
2009 4 15.51 273 4 1.69 666
2010 3 0.18 290 6 11.52 702
References
1. J. Mceus, 'Le centre de gravité du systéme solaire et le mouve-
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7%8-292 (November -~ December 1952).

“seus, 'A propos des passages de la Terre au périhélie',
'Astronomie (France), Vol. 97, pages 294-296 (June 1983).



Chapter 38

Passages through the Nodes

Given the orbital elements of a planet or comet, the times t of
passages of that body through the nodes of its orbit can easily be
calculated as follows.

We have
at the ascending node : vE=E-w or 360° - w
at the descending node : v =180° - w

where, as before, v is the true anomaly, and w the argument of
the perihelion. Then, with these values of v, proceed as follows.

Case of an elliptic orbit

Calculate the eccentric anomaly E by

E _ v
tan 5 = T e tan2 (38.1)

where e is the orbital eccentricity, and the mean anomaly M by
M = E-esink (38.2)

In formula (38.2), E should be expressed in radians; the resul-
ting value for M is then in radians too. If, however, E is expres-
sed in degrees and the computer is working in degree mode, then in
formula (38.2) one should replace e by its value e, converted from
radians into degrees, that is e, = e X 57°.29577951.

Express M into degrees. Then, if 7T is the time of perihelion
passage, and n is the mean motion in degrees/day, the required time
of passage through the node is given by

t =7+ % days (38.3)

259
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The corresponding value of the radius vector r can be calculated
from

r = a(l-ecosE) (38.4)

where a is the semimajor axis of the orbit, expressed in astronomi-
cal units.

If 2 and n are not given, they can be calculated from (32.6).

Case of a parabolic orbit

Calculate

tan

w0
1]

Y
2
Then
t = T + 27.403895 (s3 + 3s) g/ g days

where the perihelion distance g is expressed in AU. The correspon-
ding value of the radius vector is

r =q (1+s?2)

Note. — The nodes refer to the ecliptic of the same epoch as that
of the equinox used for the orbital elements. For example, if the
orbital elements are referred to the standard equinox of 1950.0,
the above-mentioned formulae give the times of passage through
the nodes on the ecliptic of 1950.0, not on the ecliptic of the
date. The difference may generally be neglected, except when the
inclination is very small or if the motion is very slow.

Example 38.a — For the 1986 return of periodic comet Halley,
W. Landgraf [Minor Planet Circular No. 10634
(1986 April 24)] provided the following orbital
elements :

1986 February 9.45891 TD
111°.84644

0.967 27426

0.012970 82 degrees/day
17.940 0782

B EW

the argument of perihelion w being referred to the standard equinox
of 1950.0.

For the passage at the ascending node, we have
v = 360° - w = 248°.15356

tan = -0.190 6646

NI
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E = -21°,5894332

M = -21°.5894332 - (0.96727426 x 57°.29577951) sin (~21°.589433?)
= -1°.197 2043
_ -1.197 2043 _ _

t =T+ 9.01297087 © T - 92.2998 days

Hence, the comet was at its ascending node (on the ecliptic of
1950.0) 92.2998 days before the perihelion passage, that is on 1985
November 9.16 TD.

Formula (38.4) then gives r = 1.8045 AU. So, at its ascending
node the famous comet was a little outside of the orbit of Mars.

For the descending node, we find similarly :

180° - w = 68°.15356

+9°.972 6067

+0°.374 9928

T + 28.9105 days = 1986 March 10.37 TD

0.8493 AU, between the orbits of Venus and Earth.

ot R <
[T | I T

The fact that the comet's motion (i = 162°) is retrograde, is irre-
levant here. Anyway, w is measured from the ascending node in the
direction of the motion of the body.

Example 38.b — For comet Helin-Roman (1989s = 1989 IX), Marsden
(Minor Planet Circular No. 16001, of 1990 March 11)
has calculated the following elements of a parabo-
lic orbit:

T = 1989 August 20.29104 TD

g = 1.3245017 AU

w = 154°.90425 (1950.0)
For the ascending node, we have For the descending node, we have
v=-gn = -154°.90425 = 180° ~ w = +25°09575
s = -4.4929389 s = +0.2225715

t = T - 4351.68 days
= 1977 September 20

r = 28.06 AU r

T + 28.3527 days
1989 September 17.644 TD

1.3901 AU
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Example 38.c — Calculate the time of passage of Venus at the as-
cending node nearest to the epoch 1979.0.

We use the elements given in Table 30.A. There we find

0.723 329 820, whence n = 1.602137
0.006 77188 ~ 0.000047 766 T + 0.000 000 0975 T2
w=m-8Q = 54°.883787 + 0°.5010998T - 0°.0014800 72

e

The terms in T3 can safely be dropped here. The elements e and
w vary (rather slowly) with time. We calculate their values for the
epoch 1979.0, that is for T = -0.21. We find

e = 0.006 78192 w = 54°.778 491

We then find successively

= ~w = -54°778 491
-54°.461 669
-54°.145 475

T - 33.7958 days

o R k<
(]

In Example 37.a, we have found T = 1978 December 31.204 for the
time of passage of Venus in the perihelion. Therefore, we have

t = 1978 November 27.408 or 1978 November 27, at 10h TD.

It is important to note that the algorithms given in this Chapter
assume that the body moves on an unperturbed orbit. To obtain full
accuracy, the heliocentric latitude of the body should be calculated
for three or five instants near the expected time. At the node, we
have, of course, latitude = zero.

Saturn reached the descending node (ecliptic of date) of its
orbit on 1990 September 4, and will be at its ascending node on
2005 January 8.

Uranus was at the descending node on 1984 December 21, and will
go througr the ascending node on 2029 May 19.

For Neptune, we have
1920 June 3 ascending node

2003 Aug. 11 descending node
2084 Dec. 30 ascending node



Chapter 39

Correction for Parallax

Suppose we wish to calculate the topocentric coordinates of a body
(Moon, Sun, planet, comet) when its geocentric coordinates are known
Geocentric = as seen from the center of the Earth; topocentric =

as seen from the observer's place (Greek: topos = place; compare
with the word 'Topology').

In other words, we wish to find the corrections Aa and AS (the
parallaxes in right ascension and declination), in order to obtain
the topocentric right ascension o’ = o + A0 and the topocentric
declination &’ = & + A8, when the geocentric values o and § are
known.

Let p be the geocentric radius and ¢' the geocentric latitude of
the observer. The expressions p sin ¢’ and p cos ¢' can be calcu-
lated by the method described in Chapter 10.

Let T be the equatorial horizontal parallax of the body. For the
Sun, planets and comets, it is frequently more convenient to use the
distance A (in astronomical units) to the Ea%th instead of the par-
allax. We then have

. _ sin 8794
sin M = ——————
A
or, with sufficient accuracy,
n
T o= _g%% (39.1)

Then, if H is the geocentric hour angle of the body, the rigorous
formulae are :

_ ~-pcos ¢’ sin W sin H
tan Aa = oomeT p cos ¢’ sin W cos H (39.2)

In the case of the declination we may, instead of computing AS,
calculate &' directly from
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(sin 8§ - p sin ¢' sin M) cos Aa

cos § - p cos ¢' sin T cos H (39.3)

tan &' =

Except for the Moon, the following non-rigorous formulae may of-
ten be used instead of (39.2) and (39.3) :

-Tp cos ¢' sin H
ho. cos 3 (39.4)
AS = -m(p sin ¢’ cos § = p cos ¢' cos H sin &) (39.5)

If T is expressed in seconds of a degree ('), then Ao and AS
too are expressed in this unit. To express A0 in seconds of time,
divide the result by 15.

It should be noted that Aa is a small angle, always lying bet-
ween -2° and +2° in the case of the Moon; it is, of course, much
less in the case of a planet.

An alternative method is as follows. Calculate

A =cos § sinH
B=cos § cos H — p cos ¢’ sin T (39.6)
C

=V TE T (30.7)

Then the topocentric hour angle H' and declination §' are given
by

sin § - p sin ¢’ sin T

tanH'=i sin6'=£
B q

Example 39.a — Calculate the topocentric right ascension and de-
clination of Mars on 2003 August 28, at 3h17mp0s
Universal Time at Palomar Observatory, for which

(Example 10.a) .. o+ = 40.546 861
p cos ¢' = +0.836339

L = longitude = +7047™275 (West)

Mars' geocentric apparent equatorial coordinates for the given
instant, interpolated from an accurate ephemeris, are

22P38m075,25 = 339°.530 208
§ = -15°46'15™9 = -15°.771083

]

The planet's distance at that time is 0.37276 AU. Hence, by for-
mula (39.1), its equatorial horizontal parallax is = = 23".592.

We st.il need the geocentric hour angle, which is equal to
H=206,-L-0a, where 8,, the apparent sidereal time at Greenwich,
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can be found as indicated in Chapter 11. For the given instant, we
find 6, = 1M40m455. Consequently

H

1h40m45s - 7hgymzys — 22h38mQp7s
-28h44m49s = -431°,2042 = +288°.7958

Formula (39.2) then gives

+0.000 090 557

tan A = 57562 324

whence
Aa = +0°.0053917 = +15,29
a' = o + Ao = 272h38m08S,.54

Formula (39.3) gives

-0.27185713

’ —_
tan &' = 147962324 47

whence &' = -15°46'30".0

If, instead of (39.2) and (39.3), we chose the non-rigorous for-
mulae (39.4) and (39.5), we find

Ao = +19'.409 = +15.29, as above;
AS = =-14".1, whence &' =8 - 14".1 = -15°46'30".0, as above.

As an exercise, perform the calculation for the Moon, again for
Palomar Observatory, using fictive values, for example

1hpom00s.00 = 15°.000 000 H = 4h00m00S.00 = +60°.000 000
+5°.000 000 T = 0°59'00"

o
§

n
1]

First, use the formulae (39.2) and (39.3). Then do the calcula-
tion over again with (39.6) and (39.7). You should obtain the same
results exactly. Compare the results with those obtained by means of
the non-rigorous expressions (39.4) and (39.5). |

We can consider the opposite problem: from the observed topocen-
tric coordinates o' and &', deduce the geocentric values a and §.
In the case of a planet or comet, the corrections Aa and A§ are so
small, that the formulae (39.4) and (39.5) can be used also for the
reduction from topocentric to geocentric coordinates.

Parallax in horizontal coordinates

The parallax in azimuth is always very small. (It would be zero
if the Earth were exactly a sphere). At the horizon, the parallax in
azimuth is always less than 7/300, where T is the equatorial hori-
zontal parallax of the body.

Due to the parallax, the apparent altitude of a celestial body is
smaller than its 'geocentric' altitude h. Except when high accuracy
is needed, the parallax p in altitude may be calculated from
sin p = p sin W cos h.
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Except in the case of the Moon, the parallax is so small that we
may consider p and T to be proportional to their sines, and then
we have p = pT cos h.

The quantity p denotes the observer's distance to the center of
the Earth, the equatorial radius being taken as unity — see Chapter
10. In many cases we may simply write p = 1.

Parallax in ecliptical coordinates

It is possible to calculate the topocentric coordinates of a ce-
lestial body (Moon or planet), from its geocentric values, directly
in ecliptical coordinates. The following formulae are those given by
Joseph Johann von Littrow (Theoretische und Practische Astronomie,
Vol. I, p. 91; Wien, 1821), but in a slightly modified form. These
expressions are rigorous.

Let A = geocentric ecliptical longitude of the celestial body,

B = its geocentric ecliptical latitude,
s = its geocentric semidiameter,

A's B’', s’ = the required topocentric values of the same quantities,
¢ = the observer's latitude,
€ = the obliquity of the ecliptic,
6 = the local sidereal time,
T = the equatorial horizontal parallax of the body.

For the given place, calculate the quantities p sin ¢' and
p cos ¢', as explained on page 78. For short, we shall call these
quantities S and C, respectively. Then

N =cos A cos B - C sin 7 cos 8

sin A _cos B - sin m(Ssing + Ccos € sin 8)
N

tan A’ =

cos \' (sinB - sin " (Scos € - C sin € sin 8))
N

tan B’ =

cos A' cos B' sin s
N

sin s' =

As an exercise, calculate X', B', s' from the following data:

A = 181°46'22".5 ¢ = +50°05'07".8, at sea level
B = +2°17'26".2 e = 23°28'00".8
™ = 0°59'27".7 8 = 209°46'07".9
s = 0°16'15".5
Answer :
A’ = 181°48'05". 0
B’ =+ 1°29'07"1
s! = 0°16'25".5



Chapter 40

Illuminated Fraction of the Disk
and Magnitude of a Planet

The illuminated fraction k of the disk of a planet, as seen from
the Earth, can be calculated from

X = _1_+_‘23<l§_i (40.1)

where i is the phase angle, which can be found from

r? + A2 - R?

cos 1 = 21 A

r being the planet's distance to the Sun, A its distance to the
Earth, and R the distance Sun~Earth, all in astronomical units.
Combining these two formulae, we find

- (z+p)? - R?

k 4rh

(40.2)

If the planet's position has been obtained by the 'first method'
of Chapter 32, then we have, using the notations used there,

R - R, cos B cos (L. — L_)
A

cos 1

(40.3)

or

xcos Becos L + ycos B sinL + z sin B
A

cos i = (40.4)

The position angle of the mid-point of the illuminated limb of a
planet can be calculated in the same way as for the Moon — see
Chapter 51.

267



268 ASTRONOMICAL ALGORITHMS

Example 40.a — Find the illuminated fraction of the disk of Venus
on 1992 December 20, at OB TD.

In Example 32.a we have found, for that instant,

r = 0.724604 (called R there)
R = 0.983824 (called R, there)
A = 0.910947

whence, by formula (40.2), k = 0.647.

Or, using, from the same Example 32.a, the values L, and R,
from (A), L, B, R from (B), x, y, z from (C), and A = 0.910947,
formulae (40.3) and (40.4) both give cos i = 0.29312, whence
k = 0.647, as above.

For Mercury and Venus, k can take all values between 0 and 1.
For Mars, k can never be less than approximately 0.838. In the case
of Jupiter, the phase angle i is always less than 12°, whence k
can vary only between 0.989 and 1. For Saturn, i is always less
than 65 degrees, so for this planet k can vary only between 0.997
and 1, as seen from the Earth.

In the case of Venus, an approximate value of k can be found
as follows.

Calculate T by means of formula (21.1). Then,

vV = 261°51 + 22518°.443 T

M = 177°53 + 35999°.050T

M'= 50°42 + 58517°.811 T

W=V + 1°91 sin M 4+ 0°.78 sin M’

A% = 1.52321 4+ 1.44666 cosw (A > 0)
X = (0.72333 + A)2 -1

2.89332 A

An approximate value of Venus' elongation Y to the Sun is then
given by

cos y = LI+ 0.4768
2A
Example 40.b — Same as in Example 40.a, but now using the appro-

ximate method described above.

We find successively

JD = 2448 976.5 W= V+ 0°462 - 0°.755
T = -0.070321 697 W= 117°.682

V = -1322°.025 = +117°.975 A%?= 0.851 144

M = -2353°.084 = +166°.016 A = 0.922575

M'= -4064°.652 = +255°.348 k = 0.640

The correct value, found in Example 40.a, is 0.647.
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Magnitude of the Planets

As seen from the Earth, the apparent {(stellar) magnitude of a
planet at a given instant depends of the planet's distance to the
Earth (A), its distance to the Sun (r), and the phase angle (i).
For Saturn, the magnitude depends also upon the aspect of the ring.

G. Miller's formulae, based on observations which he made from
1877 to 1891, are used since many years in astronomical almanacs.
The numerical expressions for the visual magnitudes are as follows

1] :

Mercury : +1.16 + 5 log rA + 0.02838 (i — 50) + 0.0001023 (i -50)2
Venus : -4.00 + 5 log rA + 0.013223i + 0.000000 4247 i3

Mars : -1.30 + 5 log rA + 0.01486 1

Jupiter 3 -8.93 + 5 log rA

Saturn : -8.68 + 5 log rA + 0.044 | AU| ~ 2.60 sin |B| + 1.25 sin?B
Uranus : -6.85 + 5 log rA

Neptune : -7.05 + 5 log rh

in which i is expressed in degrees; r and A are in astronomical
units, and the logarithms are to the base 10. For Saturn, the quan-
tities AU and B, pertaining to the ring, are defined in Chapter
44 ; care must be taken to have AU and B positive, and to express
AU in degrees. (As an approximation, the phase angle i might be
used instead of AU).

Of course, Miiller's expressions are not perfect. For instance,
the effect of the phase is not taken into account in the case of
Jupiter. In the formula for Saturn, the Sun's altitude B' above the
plane of the ring is not considered; and when B and B’ have oppo-
site signs, the dark side of the ring is turned towards the Earth,
but this case is not considered by Miiller.

In any case, the calculated magnitudes should_be rounded to the
nearest tenth of a magnitude. Giving them to the nearest hundredth
makes no sense. Mars, for instance, can differ by as much as 0.3
magnitude from the brightness it 'ought' to have. Some regions of
Mars have more dark markings than others, so the planet's brightness
depends on which face is turned towards us; and the varying polar
caps and a major dust storm can add to its magnitude. In the case
of Jupiter and Saturn, there are varying atmospheric phenomena, etc.

Example 40.c — Magnitude of Venus on 1992 December 20.0 TD.
From Example 40.a, we have
0.724 604, A = 0.910947, cos i = 0.29312,

whence i = 72.96 degrees.

r

Miiller's formula for Venus then gives: magnitude = -3.8.
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Example 40.d — Magnitude of Saturn on 1992 December 16.0 TD.
From Example 44.a, we have
r= 9.867882 B = 16°.442
A = 10.464 606 AU = 4°.198

Miller's formula for Saturn then gives: magnitude = +0.9.

.

Since 1984, the American Astronomical Almanac uses other formulae
for the calculation of the visual magnitudes of the planets. It has
been stated [2] that these new expressions "are due to D.L. Harris".
In fact, in his article [3], Harris does not provide new expressions
at all. No expression is 'due' to Harris.

For Mercury and Venus, Harris (pages 277 and 278 of his article)
just mentions expressions due to the French astronomer A. Danjon.
For the outer planets, Harris discusses values of the absolute mag-
nitude and of the phase coefficient made by others, but he himself
does not propose or give new expressions.

If r and A (in astronomical units) and i (in degrees) have the
same meanings as above, the new expressions used in the Astronomi-
cal Almanac since 1984 are:

Mercury : -0.42 + 5 log rA + 0.0380i - 0.000273i2 + 0.000002 13

Venus : -4.40 + 5 log rA + 0.0009 i + 0.00023922 — 0.000 00065 1°

Mars : -1.52 + 5 log rA + 0.0161

Jupiter : -9.40 + 5 log rA + 0.0051

Saturn : same as Miller's formula, except that for the absolute
magnitude the value -8.88 is used instead of -8.68;

Uranus : -7.19 + 5 log rA

Neptune : -6.87 + 5 log rA

Pluto : -1.00 + 5 log rA

For the magnitudes of the minor planets, see Chapter 32.
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Chapter 41

Ephemeris for Physical Observations
of Mars

In this Chapter, the following symbols will be used :

Dg = the planetocentric declination of the Earth. When it is posi-
tive, Mars' northern pole is tilted towards the Earth;

Dg = the planetocentric declination of the Sun. When it is positive,
Mars' northern pole is illuminated;

P = the geocentric position angle of Mars' northern rotation pole,
also called “position angle of axis'". It is the angle that the
Martian meridian from the center of the disk to the northern
rotation pole form (on the geocentric celestial sphere) with
the declination circle through the center, measured eastwards
from the North Point of the disk. (By definition, position
angle 0° means northwards on the sky, 90° east, 180° south,
and 270° west);

g = the angular amount of the greatest defect of illumination; it
is expressed in arcseconds;

Q = the position angle of this greatest defect of illumination;

w = the (areographic) longitude of the central meridian.

The drawing on the next page shows the appearance of Mars on 1992
November 9. As seen from the Earth, the illuminated fraction of the
planet's disk is 90% (k = 0.90). UV is the greatest defect of il-
lumination. § is Mars' South Pole (just behind the limb, hence not
visible), A is the northern extremity of the axis of rotation. AS
is the central meridian. The arrow shows the direction of the nor-
thern celestial pole (on the celestial sphere of the Earth). N is
the North Point of Mars' disk (not the planet's north pole!). The
position angles are measured from N, towards the East. So we have

Q = arc NESV, P = arc NESVA.
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In the calculation of these
quantities, the effect of light-
time should be taken into account.
Moreover, to obtain full accuracy,
the aberration of the Sun as seen
from Mars must be taken into ac-
count in the calculation of Dg;
and in the calculation of P one
should take into account the ef-
fects of nutation and aberration
on Mars' position.

During the years, several posi-
tions for the north pole of Mars
(that is, the coordinates of the
point on the celestial sphere to-
wards which the axis is directed)
have been used in the astronomical
almanacs.

According to Lowell and Crommelin [1], the right ascension o, and
declination &, of the north pole of Mars at the beginning of the
year t, referred to the mean equinox of the date, are given by

R 21h10m + 18.565 (¢ - 1905.0)
8§, = +54°30' + 12".60 (t - 1905.0)

This position of the north pole was adopted in 1909. But from
1968 to 1980, the Astronomical Ephemeris used the position obtained
by G. de Vaucouleurs [3]: at the beginning of the year t

a, = 316°.55 + 0°.006 750 (£ - 1905.0)
8, = +52°.85 + 0°.003 479 (¢ - 1905.0)

]

Note the difference of 1°39' between the two values of §,, for
the same epoch 1905.0.

Recently adopted values [4] are

a, = 317°.342 ,

5. = +52°.711 equinox 1950.0 and epoch J1950.0
o .

a, = 317°.681

60 = 1500 886} equinox 2000.0 and epoch J2000.0

From these values, we deduce the following expressions for the
longitude and latitude of Mars' north pole, referred to the ecliptic
and mean equinox of the date :

Ao = 352°.9065 + 1°.17330 T

41.1
Bo = +63°.2818 - 0°.003%4 T ( )

where T is the time in Julian centuries from the epoch J2000.0;
see formula (21.1). Formulae (41.1) take into account the precession
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the rotational axis of both Earth and Mars.

For a given instant t, the values of Dy, Dg, etc., can be cal-

culated as follows.

1.
2.

10.

Calculate A, and B, by means of (41.1).

Calculate the heliocentric longitude 1,, latitude b, and radius
vector R of the Earth, referred to the ecliptic and mean equi-
nox of the date, for instance by using the relevant data from
Appendix II and the precepts given in Chapter 31.

. Calculate the corresponding heliocentric coordinates 1, b, r of

Mars, but for the instant ¢t - T, where T is the light-time from
Mars to the Earth, as given by (32.3). Because Mars' distance A
is not known in advance, it should be found by iteration — see
Step 4. One may use A =0 as a starting value.

. Calculate
x = r cos b cos 1 - R cos I,
y = r cos b sinl1 - R sin I, (41.2)
z = r sinb - R sin b,

Then Mars' distance A to the Earth is

A= J/x?2 +y?+ 22 >0 (41.3)

. Calculate Mars' geocentric longitude A and latitude B from

Z

tan)\=*y° tan B =
x ;x2+y2

sin D = -sin B, sin B - cos B, cos B cos (A, — A)

. Calculate the longitude N of the ascending node of Mars' orbit

from
N = 49°5581 + 0°.7721 T

Then correct 1 and b for the Sun's aberration as seen from
Mars :

1' = 1 - 0°.00697/r
b' = b - 0°.000 225 ﬁ%'—")—

sin Dg = -sin B, sin b’ - cos B, cos b’ cos (A, -1")

. If JDE is the Julian Ephemeris Day corresponding to the given

time, calculate the angle W, in degrees, from

w = 11,504 + 350.89200025 (JDE - 1 - 2433282.5)
where T is the light-time (in days) found in steps 3 and 4.

Calculate the mean obliquity of the ecliptic €, by means of
formula (21.2). Then use expressions (12.3) and (12.4) to find
the pole's equatorial coordinates o,, 8§, from the ecliptical
coordinates A, and 8, .
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11. Calculate
u =y cos €, — 2z sin g,
v =y sin €, + z cos g,

and the angles a, 6, g from

tan a4 = L2
X
t v
tan 6 =
/x2 + u?
sin 6, cos § cos (a,-0) - sin 8§ cos §,
tan § =

cos § sin (a,-a)

Note that § is between -90° and +90°. But a and ¥ can take all
values from 0° to 360°, and hence they should be taken in the
proper quadrant!

12. Find w =W - g, where g is expressed in degrees.

13. Calculate the nutations in longitude (AYy) and in obliquity (Ag)
as explained in Chapter 21. Only the most important terms may be
used here; an accuracy of, say, 0".01 is not necessary.

14, Correct A and B for the aberration of Mars :

correction to A : +0°.005 693 cos (I, = A)
cos B
correction to B : +0°.005693 sin (1, - A) sin B

15. Add Ay to A, and to A. Add Ae to €, to obtain the true obli-
quity of the ecliptic €.

16. Transform (A,, B,) and (A, B) to the equatorial coordinates
(a), 8,') and (a’, §') by means of expressions (12.3) and
(12.4), using for € the true obliquity obtained above.

17. The position angle P is given by

cos 6, sin (o, - a’)
sin 8§ cos §' - cos §,’ sin &’ cos (a, - a’)

tan P

(41.4)

18. The position angle ¥ of the mid-point of the illuminated limb
can be obtained as for the Moon — see Chapter 46. Then the po-
sition angle Q of the greatest defect of illumination is

X * 180°.
19. Mars' apparent diameter d is given by
_ 9"3p
4= "3

If k is the illuminated fraction of the planet (Chapter 40),
then the greatest defect of iliumination is q = (1 - k)d.



41. Physical Ephemeris of Mars 275

Example U1.a — Calculate the quantities concerning the appearance
of Mars on 1992 November 9, at OB UT.

The instant corresponds to JD 2448 935.5. For the difference bet-
ween Dynamical Time and Universal Time, we use the value AT = 4595,
or +0.000683 day, so that the given instant corresponds to

1992 November 9.000683 TD = JDE 2448 935.500 683.

Step 1. T = ~-0.071 4441976
Ao = 352°.82267
B, = +63°.28208
Step 2. From an accurate ephemeris, calculated by using the com-
plete VSOP87 theory, we deduce
1, = 46°50'37".90 = 46°.843 861
b, = ~0".60 = —0°.000167
R = 0.99041301
Step 3. The following geometric heliocentric coordinates of Mars,
referred to the ecliptic and mean equinox of the date, are
taken from an accurate ephemeris :
TD 1 b r
1992 Nov. 8.0 77°571'48145 +0°52'54"74 1.5403797
9.0 78 28 24.28 +0 53 46.72 1.5416585
10.0 78 58 57.09 +0 54 38.36 1.542 9347
We use A =0 (hence T =0) as a starting value. For 1992
November 9.000683 TD we find, by interpolation,
1 = 78°473759, b = +0°.896 321, r = 1.5416594 AU
Step 4. x = -0.3694199
y = +0.787 8856 A = 0.8705266
z = +0.0241192

Step 3. With this value of A, we obtain for the light-time the
value T = 0.005028 day. Hence, t - T is
1992 November 9.000 683 - 0.005028 = November 8.995655 TD.
For this instant we find, by interpolation of the tabula-
ted values,

1= 78°471197, b = +0°.896 249, r =1.5416529.

Step 4. x = -0.3693536
y = +0.787 8654 A = 0.870 4801
z = +0.024 1172

This new value of A yields for the light-time a value
which differs by only 0.02 second from the preceding va-
lue, so a new iteration is not needed.

Step 5. A = 115°.117 321, B = +1°.587 619
Step 6. Dy = +12°.44
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Step 7. N = 49°.5029 1' = 78°.466 676
b’ = 40°.896 121

Step 8. Dpg = -2°.76

Step 9. W = 5492522°4593 = 2°,4503

Step 10. g, = 23°26'24".793 = 23°.440 220
o, = 317°.632606
8, = +52°.860916
Step 11. u = +0.7132537 o = 117°.377 075
v = +0.3355335 § = 4+22°.672176
gz = 250°.9052
Step 12. w = —248°.45 = 111°.55
Step 13. Ay = +15"42 Ag = -1".00
Step 14. corrected A = 115°.119429
corrected B = +1°587 472
Step 15. corrected A, 352°.826 95

corrected A = 115°123712 £ = 237439042

Step 16. o, = 317°.63529 0’ = 117°.38380
8 = +52°.86236 §' = +22°.67062

Step 17. P = 347°.64

.
’

o

Step 18. The right ascension and declination of the Sun can be ob-
tained with sufficient accuracy from (24.6) and (24.7),
with @ = 1, + 180°. We find 224°.378 and -16°.860.

The equatorial coordinates of Mars being & and §, we find
by means of formula (46.5) ¥x = 99°91, whence Q = 279°.91.

Step 19. Using the values of R, r and A found in Steps 2 to 4,
formula (40.2) yields k =0.9012. The greatest defect of
illumination is q = (1 - k) x 9"36/A = 1'"06.

Mars' apparent diameter is 9"36/A = 10".75.
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Chapter 42

Ephemeris for Physical Observations
of Jupiter

For Jupiter three rotational systems have been adopted. System I
applies to features within about 10° of the planet's equator; it
has an adopted sidereal rotation rate of exactly 877.90 degrees in
24 hours of mean solar time. System II, for use in higher latitudes,
where the cloud features take about five minutes longer to circle
the planet than those at the equator, rotates exactly 870.27 degrees
per day. It follows that the planet's sidereal rotation period is
gh50m30s,003 in System I, and 9h55%408,632 in System II.

System III, rooted deep in Jupiter's interior, applies to radio
emissions of the planet. But in this Chapter we will consider only
Systems I and II, which are of interest to the visual observer.

As for Mars (see Chapter 41), Dg and Dg will denote the planeto-
centric declinations of the Earth and the Sun, respectively, and P
the position angle of Jupiter's northern rotation pole. The longi-
tude of the central meridian will be denoted w; for System I, and
w, for System II.

Because Jupiter's rotation axis is almost exactly perpendicular
to the planet's orbital plane around the Sun, it is not needed to
correct 1 and b for the Sun's aberration in the calculation of Dg.
The error in Dg made by neglecting this aberration will never ex-
ceed 0".5.

For a given instant t, the values of Dy, Dg, w;, Wy, and P can
be obtained as follows.
1. Calculate
d = JDE - 2433282.5

d

T1= 35535

277
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and then the right ascension o, and declination 6§, of the north
pole of Jupiter, referred to the mean equinox of the date, by
the following expressions given on page 725 of the Soviet alma-
nac Astronomicheskii Ezhegodnik for 1985 :

o, 268°.00 + 0°.1061 74
8o +64°.50 - 0°.0164 T

2. Calculate the anglés Wy and W, from

17°.710 + 877°.90003539 4
16°.838 + 870°.27003539 4

Wy
Wy

These can be large (positive or negative) angles; they should be
reduced to less than 360 degrees. The angles W; and W, are re-
lated to the longitude Systems I and II, respectively. The con-
stant terms 17°.710 and 16°.838 have been chosen in order to
maintain consistency with the Jovian longitude systems establi-
shed at the end of the 19th century. The other two constants are
equal to the values 877°.90 and 870°27 mentioned at the begin-
ning of this Chapter, increased by 0°.00003539, the daily vari-
ation of the arc of the Jovian equator from its ascending node
on the celestial equator to its ascending node on the orbit.

3. Calculate the heliocentric longitude I,, latitude b, and radius
vector R of the Earth, referred to the ecliptic and mean equinox
of the date, for instance by using the relevant data of Appendix
II and the precepts given in Chapter 31.

4. For the same instant, calculate the corresponding heliocentric
coordinates 1, b, r of Jupiter. Do not take the light-time into
account here.

5. Calculate x, y, z by means of formulae (41.2), and then Jupi-
ter's distance A by (41.3).

6. Correct Jupiter's heliocentric longitude 1 (in degrees) for the
light-time :

correction to 1 = -0°012990 A /r2

(The correction to the heliocentric latitude can be neglected
here.)

7. Using the corrected value of 1, calculate x, y, z, A again, as
in Step 5.

8. Calculate the mean obliquity of the ecliptic €, by means of
formula (21.2).

9. Calculate o, and &; from

cos €, sin I - sin g, tan b
tan ag =
cos 1
sin 6 = cos £, sin b + sin €, cos b sin 1

The angle ag should be taken in the proper quadrant.



10.

11.

i2.

13.

14.

16.

17.

18.
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sin Dg = -sin §, sin §g - cos 6, cos 8¢ cos (o, - ag)
The extreme values of Dg are +3°.12 and -3°.12.

Calculate u, v, o, 8,and ¢ as for Mars (see Step 11 of Chap-
ter 41).

sin Dg = —-sin 6, sin § - cos §, cos § cos (a, - a)

The extreme values of Dy are +3°.4 and -3°4.

If ¢ is expressed in degrees, and A in astronomical units,
then

Wy = Wy - g - 5°.070334A

Wy = Wy — § - 5°.02626 A

The last term in each formula is the amount of rotation during
the light-time.

The values obtained for w; and w, should be reduced to the
interval 0°—-360°, by adding or subtracting a convenient multi-
ple of 360 degrees. Moreover, it should be noted that the re-
sults refer to the geometric (the 'true') disk of Jupiter. The
planet actually has a very small phase, and the longitudes of
the 'central meridian' of the illuminated disk can be obtained
by adding to w; and w, the correction for phase € which is
equal to

2rA + R2 - r?2 - p?
4rA

c = +57°,2958 x

and has the same sign as sin (I - 1,). The angle ¢ is always
small, never exceeding 0°61.

If an accuracy of 0.1 degree is sufficient for the position
angle P, go to step 18.

Otherwise, calculate the nutations in longitude (AY) and in
obliquity (A€), as explained in Chapter 21. Only the most im-
portant terms may be used; an accuracy of 0'.01 is not needed.
Add Ae to €, to obtain .

Correct o and § for Jupiter's aberration :
correction to a :

cos & cos I, cos € + sin & sin I,

+0°.005693
cos 6

correction to § :

+0°.005693 [ cos 1, cos € (tan € cos § - sin a sin §)

+ cos @ sin § sin 1, ]

Correct o, 6, a, and 6§, for the nutation, by means of expres-
sions (22.1), giving o', &', a, and &..

Obtain P by means of formula (41.4).
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Example 42.a — Calculate the quantities concerning the appearance
of Jupiter on 1992 December 16, at 0h UT.

This instant corresponds to JD 2448972.5. For the difference
between Dynamical Time and Universal Time, we shall use the value
AT = +59 seconds = +0.00068 day, so that the given instant corres-
ponds to 1992 December 16.00068 TD = JDE 2448 972.50068.

15690.00068 o,

Step 1. 4 = = 268°.04558
Ty = +0.429 569 §, = +64°.49296
(keeping extra decimals to
minimize rounding errors)
Step 2. w; = 13774269°.8622 = 309°8622
W, = 13654554°.2851 = 114°.2851

Steps 3-4. From accurate ephemerides, calculated by using the com-
plete VSOP87 theory, we deduce :

1, = 84°.285703 1 = 181°.882168
b, = +0°.000 197 b = +1°290 464
R = 0.98412316 r = 5.446 42320
Step 5. x = -5.5400914
y = -1.1580704 A = 5.6611645
z = +0.122 6552
Step 6. 1 = 181°.882168 - 0°.002479 = 181°.879 689
Step 7. x = -5.540 0991
y = -1.157 8350 A = 5.6611239
z = +0.122 6552

Step 8. £, = 23°26'24".745 = 23°.440 2069

Step 9 og = 182°.237 749
8g = +0°.436472
Step 10. Dg = -2°.20
Step 11. u = -1.1110767 o = 191°.340 327
v = ~0.348 0441 § = -3°.524749
z = 13°5238
Step 12. Dy = -2°.48
Step 13. wy = 267°.63 Wy, = 72°.31

These are the longitudes of the Central Meridian of the
geometric disk in Systems I and II, respectively.

Step 14. ¢ = +0°.43. Since sin(1-1,) is positive, so is C.
The longitudes of the Central Meridian of the illuminated

disk are :
System I : wy = 267°.63 + 0°.43 = 268°.06
System II : w, = 72°31 + 0°.43 = 72°74

Step 15. Ay = +16".86 he = ~1'".79 e = 23°.439710
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Step 16. correction to o : -0°001627 o = 191°.338 700
correction to 6 : +0°.000560 § = ~3°.524189
Step 17. a' = 191°.34305 o, = 268°.04594
§' = -3°.52592 8§, = +64°.49339

Step 18. P = 24°.80

Lower accuracy

The following, shorter method may be used when high accuracy is
not needed.

For the given instant (TD!), calculate the JDE (see Chapter 7),
and then proceed as follows.

Number of days (and decimals of a day) since 2000 January 1, at
12b TD :
d = JDE ~ 2451545.0
Argument for the long-period term in the motion of Jupiter:
vV = 172°74 + 0°.001115884d

Mean anomalies of Earth and Jupiter :
M = 357°.529 + 0°,9856003 4
N = 20°020 + 0°.08308534d + 0°.329 sin V
Difference between the mean heliocentric longitudes of Earth and
Jupiter :
J = 66°.115 + 0°9025179d - 0°329 sin Vv
The angles V, M, N and J are expressed in degrees and decimals.

If necessary, they should be reduced to the interval 0-360 degrees ;
this depends on your computer language.

Equations of the center of Earth and Jupiter, in degrees :

1.915 sin M + 0.020 sin 2M
5.555 sin N + 0.168 sin 2N

A
B

and then
K=J+A-B
Radius vector of the Earth:
R = 1.00014 - 0.01671 cos M ~ 0.00014 cos 2M

Radius vector of Jupiter :
r = 5.20872 - 0.25208 cos N ~ 0.00611 cos 2N

Distance Earth—Jupiter :

A = /12 ¥+ RZ ~ 2rR cos K
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The distances R, r and A are expressed in astronomical units,
and A should of course be taken positive. The phase angle of Ju-
piter (that is, the angle Earth-Jupiter-Sun) is then given by

sin ¢ = %sinK

The angle Yy always lies between -12° and +12°. Because R and A
are always positive, the angle i has the same sign as sin K.

The longitudes of the central meridian in Systems I and II are
then, respectively,

wy = 210°.98 + 877°.8169088 (d - T%) + Yy - B
w, = 187°.23 + 870°.186 9088 (d - —1—%—) + Y - B

where —-A /173 is the correction for the light-time, expressed in
days. The denominator 173 results from the fact that the light-time
for unit distance is 1/173 day.

The values obtained for w,; and w,; should be reduced to the in-
terval 0°—-360°, by adding or subtracting a convenient multiple of
360 degrees. The results refer to the geometric disk of Jupiter. The
longitudes of the 'central meridian' of the illuminated disk can be
obtained by adding to w; and w, the correction for phase which is
equal to "
+ 57°.3 SinZE

and the sign is opposite the sign of sin K.

Calculated in this manner, w,; and w, can be up to 0.1 or 0.2
degree in error.

Find Jupiter's heliocentric longitude A referred to the equinox
of 2000.0 by the formula

A = 34°.35 + 0°.083091d + 0°.329 sinV + B

Then we obtain, in degrees and decimals,

Dg 3.12 sin (X + 42°.8)

r—-A

Dg = Dg — 2.22 sin § cos (A +22°) - 1.30 A

sin (X - 100°.5)

In these expressions, 3° 12 is the inclination of the equator of
Jupiter on the orbital plane, 2°.22 its inclination on the ecliptic,
and 1°.30 the inclination of the orbital plane on the ecliptic.
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Example 42.b —~ Let us take the same instant as in Example 42.a,
namely 1992 December 16, 0B UT
= JD 2448972.5
= JDE 2448 972.50068.

We find successively

= -2572.49932

= 169°.87

= =2177°.927 = +342°.073
= —193°.659

= -2255°670 = +264°.330
= —0°.601

= +1°.235

= 262°.494

= 0.98413

= 5.44824

= 5.66151

= -0.17234

= -9°.924

sin

S € P>H XN G RIQ
)

A

4~ 173

= —-2572.53205

From this we deduce, for the geometric disk of Jupiter :

-2258 012°.31 = 267°.69
-2238 407°.64 = 72°.36

f

Wy

Wy
The correct values are 267°.63 and 72°.31 (see Step 13 of Example
42.a).

For the correction for phase, we find +0°.43, exactly as in Ex-~
ample 42.a, Step l4.

A = -178°.11

-2°,194
-2°.194 - 0°.350 + 0°.048 = -2°,50

Dg
Dg







Chapter 43

Positions of the Satellites of Jupiter

This Chapter gives two methods to calculate, for any given instant,
the positions of the four great satellites of Jupiter with respect

to the planet, as seen from the Earth.

North

East West

satellite
®

A

1
JUPITER X

>

These apparent rectangular

coordinates X and Y
of the satellites will
be measured from the
center of the disk of
Jupiter, in units of
the planet's equato-
rial radius. X is
measured positively to
the west of Jupiter,
negatively to the
east, the X-axis coin-
ciding with the equa-
tor of the planet.

Y is positive to the
north, negative to the
south, the Y-axis
coinciding with the
planet's rotation axis
(see the drawing).

The accuracy of the first method ('low accuracy') is sufficient
for identifying the satellites at the telescope, or for drawing a
wavy-line diagram showing their positions with respect to Jupiter,
as given in several astronomical almanacs and magazines. The high-
accuracy method is needed, for instance, to calculate the classical
phenomena of the satellites (eclipses, transits, etc.) and their

mutual phenomena.

285
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Low accuracy

First, convert the date and the instant (TD) into the Julian Day,
using the method described in Chapter 7. Then, obtain the following
quantities as explained in Chapter 42 ('lower accuracy'): d, V, M,
N, J, A&, B, K, R, r, A, ¥, and the planetocentric declination Dy of
the Earth.

For each of the four satellites, we now calculate an angle u
which is measured from the inferior conjunction with Jupiter, so
that u=0° corresponds to the satellite's inferior conjunction,

u = 90° to its greatest western elongation, u = 180° to the superior
conjunction, and u = 270° to the greatest eastern elongation.

o o A
uy = 163°.8067 + 203°.4058643 (d - 53) + ¥ - B
= o o — _A_ -
up = 358°.4108 + 101°.2016334 (d - 53) + ¥ - B
- o o — _A_ -
uy = 57129 + 50°.2345179 (d - 7535) + ¥ - B
u, = 224°8151 + 21°.4879801 (d - 2=) + ¢ - B

If necessary, these angles u should be reduced to the interval
0° - 360°. In order to obtain more accurate values, the results can
be corrected as follows. Calculate the angles G and H by means of
the formulae

— o < - —A
G = 331°.18 + 50°.310482 (d 173

— o o — _.A
H = 87°40 + 21°.569231 (4 173

Then we have the following corrections, in degrees :

correction to u; : +0.473 sin 2(uy - u,)
correction to u, : +1.065 sin 2(u,; - uj)
correction to u; : +0.165 sin G
correction to u, : +0.841 sin H

The first correction is due to a periodic perturbation of satel-
lite I by satellite II. The second correction is a perturbation of
II by III. The two last corrections are due to the eccentricities
of the orbits of satellites III and IV. (The orbits of I and II are
almost exactly circular.)

It should be noted that we take into account only the largest pe-
riodic terms in the motions of the satellites. There are many other
(but smaller) periodic terms. For instance, satellite I is perturbed
by satellite III too, satellite III by II and by IV, etc. — see
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further the 'high accuracy' method in this Chapter.
The distances of the satellites to the center of Jupiter, in

units of Jupiter's equatorial radius, are given by

ry = 5.9073 - 0.0244 cos 2 (uy — uy)

ry = 9.3991 - 0.0882 cos 2 (u; ~ uj3)

r3 = 14.9924 - 0.0216 cos G

r, = 26.3699 - 0.1935 cos H
where the uncorrected values of uy, etc., should be used. In these

expressions, the periodic terms are again due to mutual perturba-
tions of the satellites or to their orbital eccentricities.

The apparent rectangular coordinates X and Y of the satellites
are then given by

Xy = ry sin uy and Y, = —-r; cos u; sin Dg

with similar expressions for the other three satellites.

Example 43.a — Calculate the configuration of the satellites of
Jupiter on 1992 December 16, at Oh UT =
JD 2448972.5 = JDE 2448 972.50068. (The value
AT = 450 seconds is used).
For this instant we have found, in Example %2.b,
d = ~2572.49932 A
- = - 5
B = +1°.235 d- 173 2572.33205
Y = -9°.024 Dg = -2°50
By means of the formulae given in the present Chapter, we then
find successively :
u; = -523115°457 = 324°.543 2 (u; —uy) = 546°.53 = 186°.53
u, = -260228°.722 = 51°.278 2 (u, —uz) = 93°.26
uy = =129235°.353 = 4°,647 G = —-129094°15 = 145°.85
u, = - 55064°.861 = 15°.139 H = - 55400°14 = 39°.86
correction to u; : -0°054 corrected uy = 324°.489
correction to u, : +1°.063 corrected u, = 52°341
correction to uz : +0°%093 corrected u; =  4°.740
correction to u, : +0°539 corrected u, = 15°678
ry = 5.9073 + 0.0242 = 5.9315 Xy = -3.45 Y, = +0.21
ry, = 9.3991 + 0.0050 = 9.4041 X, = +7.44 Y, = +0.25
ry = 14.9924 + 0.0179 = 15.0103 Xy = +1.24 Yy = +0.65
r, = 26.3699 - 0.1485 = 26.2214 X, = +7.09 Y, = +1.10

(It is just a coincidence that all four Y-values are positive!)
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With these values of X and Y we can draw the following figure
which shows the configuration of the satellites at the given time.
In this figure the South is up, and the West to the left, as in the
field of an inverting telescope in the northern hemisphere.

Jupiter

West
Iie

v North

The X- and Y-values, resulting from an accurate calculation, are
mentioned in Example 43.b. The discrepancies between the Y-values
are mainly due to the fact that, in this simplified method, the in-
clinations of the orbits of the satellites on the equatorial plane
of Jupiter have been neglected. Actually, the four satellites can
reach extreme latitudes of 0°03', 0°31', 0°20', and 0°44’, respec-
tively, with respect to the equatorial plane of the planet. As a
consequence, mutual occultations cannot be calculated with certain-
ty by means of the simplified method described above. In the case
of a very close conjunction, it is even not possible to deduce which
of the two satellites passes to the north of the other.

High accuracy
The following method is based on the theory E2 of the satellites
due to Lieske [1], with improvements known as E2x3 [2].

For the given instant, calculate the following quantities (see
Chapter 24) :

® = geocentric geometric longitude of the Sun,
8 = geocentric geometric latitude of the Sun,
R = radius vector of the Sun in astronomical units.

Let T be the light-time from Jupiter to the Earth. Because the
distance of Jupiter to the Earth is not known in advance, so is T
not known. The distance A should be found by iteration. A good
starting value is A =5, since the extreme values of Jupiter's dis-
tance to the Earth are 3.95 and 6.5 astronomical units. The light-
time is given by (32.3); a better value for A will be provided by
formula (43.2).

Calculate the following values for the given time decreased by
the light-time T (see Chapter 31):
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1 = heliocentric longitude of Jupiter,
b = heliocentric latitude of Jupiter,
r = radius vector of Jupiter, in AU.

In the above, the longitudes and latitudes are referred to the
ecliptic and mean equinox of the date.

Calculate the rectangular geocentric ecliptical coordinates of
Jupiter

x = rcosb cosl + Rcos @
y=rcoshb sinl + R sin @ (43.1)
z = r sinb + R sin B

and its distance to the Earth
A= /x2 4+ y? + 22 (43.2)

Calculate

A = ATN2 (y, x) and

zZ
o = ()

where, as mentioned earlier in this book, ATN2 is the 'second' arc-
tangent function. In other words, A is equal to ATN(y/x) taken in
the proper quadrant.

Let t be the time measured in ephemeris days from 1976 August 10
at Ok TD = JDE 2443000.5, decreased by the light-time T. In other
words, if JDE is the Julian Ephemeris Day corresponding to the given
instant,

t = JDE - 2443000.5 - <
In the following expressions, all numerical values are expressed
in degrees and decimals. The longitudes are referred to the standard

equinox of 1950.0.

Mean longitudes of the satellites :

£, = 106.07947 + 203.488 955432 ¢
L, = 175.72938 + 101.374724550 t
£, = 120.55434 + 50.317609110 ¢t
L, = 84.44868 + 21.571071314¢t

Longitudes of the perijoves :

m, = 58.3329 + 0.16103936 t

M, = 132.8959 + 0.04647985 ¢t
my = 187.2887 + 0.00712740 ¢t
m, = 335.3418 + 0.001839098 ¢

Longitudes of the nodes on the equatorial plane of Jupiter :
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Wy
Wy
Ws
Wy

311.0793
100.5099
119.1688
322.5729
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0.13279430 t
0.03263047 ¢
0.00717704 ¢
0.00175934 t

Principal inequality in the longitude of Jupiter:

r

0.33033 sin (163°.679 + 0°.0010512t)
+ 0.03439 sin (34°.486 - 0°.016 1731 t)

There is a small libration, with a period of 2070 days, in the
longitudes of the three inner satellites: when satellite II decele-
rates, I and III accelerate. To take this into account, we need the
phase of free libration:

¢, = 191.8132 + 0.17390023 ¢

Longitude of the node of the equator of Jupiter on the ecliptic :
316.5182 - 0.00000208 t

¥

Mean anomalies of Jupiter and Saturn :

G =
G'=

30.23756 + 0.0830925701¢ + T
31.97853 + 0.0334597339¢

Longitude of the perihelion of Jupiter :

I

13.469942

(considered as a constant in the E2 theory)

PERIODIC TERMS IN THE LONGITUDES OF THE SATELLITES

Satellite I

+0°47 259 sin 2 (&4 - £;) +07
~0.03 480 sin (w3 - m,) -0
-0.01756 sin (my + M3 - 21 -~ 26) +0.
+0.01080 sin (£, - 285 + m4) +0.
+0.00 757 sin &, -0.
+0.00663 sin (£, - 2£4 + m,) -0.
+0.00453 sin (Zl - my) -0.
+0.00 453 sin (£, - 2&5 + m,) +0.
~0.00354 sin (£, - £,) +0.
~-0.00317 sin (2¢ - 21) 0.
-0.00269 sin (£, - 224+ 1)

+0.00263 sin (£, - m, ) +0.

Call X1 the sum of these terms.

00186

.00 186

00167
00158
00 155
00 142
00115
00 089
00 084
00 084

00 053

sin (£, - m)
sin G
sin (my, - my)
sin 4 (£, - £,)
sin (£, - £4)
sin (Y + w5 -21 -26)
sin 2 (£ - 24&, + w,)
sin (m, - m,)
sin (W, - w;)
sin (21 + Ty
- 20 -26)
sin (Y - wy)



Satellite

+1
+0
+0
+0
+0
-0
+0
-0
+0
-0
+0
-0
+0
-0
+0
+0
-0
-0
+0
+0
-0

706 476 sin
.04253 sin
03579 sin
.02383 sin
.01977 sin
.01 843 sin
.01299 sin
.01 142 sin
.01078 sin
.01 058 sin
.00 870 sin
00775 sin
.00524 sin
00460 sin
.00450 sin
.00 327 sin
.00296 sin
.00 151 sin
.00146 sin
00125 sin
.00117 sin

Call Z2 the sum of these terms.

Satellite

+0°16 477 sin

+0
-0
+0
+0
-0
+0
=0
-0
+0
-0
+0
+0
+0
+0
+0

.09062 sin
.06907 sin
.03786 sin
.01 844 sin
.01 340 sin
.00703 sin
.00670 sin
.00540 sin
.00 481 sin
.00409 sin
.00379 sin
.00 235 sin
.00198 sin
.00180 sin
.00129 sin
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I1

2(L, - £3)

(21 - 222 + T3)
£, - m3)

£y -28, + 1)
(22—‘”‘.)

@)

(g —my,)
(22_23)

(22 —’ITZ)

G

(22 - 223 + ‘|T2)
2(y -1)
2(Ly - £y)
(21 _23)

(22"2234“"1)

(Y - 26 +wy -21)
(my + M3 - 20 - 26G)
26

(w _w3)

(‘b"wg)

(21— 223 + TT3)

111

(23' TT3)
(23— '|Tu)

L, -2y
(1T3"|Tu)
2(25 - £3)

G

(22"'223"' TT3)
2(y - 1)

(23 “Z[‘)

(my+ 13- 20 -26)
(22—2234' '|T2)
(22“ 223 + '|T[‘)

- w3)
(v - wu)
D
3(L5-L£,)

-0700 095
+0.00 086
-0.00 086

-0.00078
-0.00 064
-0.00063
+0.00 061
+0.00 058
+0.00 058
+0.00 056
+0.00 055
+0.00 052

-0.00043
+0.00 042
+0.00 041
+0.00 041
+0.00 038
+0.00 032
+0.00 032
+0.00029

+0700 124
-0.00 119

+0.00 109
-0.00 099
+0.00 091
+0.00 081

-0.00076
+0.00 069
-0.00058
+0.00 057

-0.00057
-0.00052
-0.00052

sin
sin
sin

sin
sin
sin
sin
sin
sin
sin
sin
sin

sin
sin
sin
sin
sin
sin
sin
sin

sin
sin

sin
sin
sin
sin

sin
sin
sin
sin

sin
sin
sin
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2(22"())2)
2(8y -~ 28, + wy)
(56' - 2¢

+ 52°,225)
(22_24)
(21 _223"' 'ﬂl‘)
(385 ~78,+4mw,)

(nl - TTQ)
2(y-1-06)
(wy = wy)
208, - 1)
2(21 _23)
(32, -7¢£,

+ 1y +31,)
(21_'”3)
(TT3 - ny)
5(22‘23)
(T[z,, -1)
(22 - TTl)
((“)2 "w3)
28y -6~ 1)
(nl _TT3)
(21 “23)
(56" - 2¢

+52°.225)
Ly - £,)
(38, -7L, +4m,)
(w3 —wh)
(32, -7,

+ 13 +3m,)
(222 - 323 + '|T3)
(T[u - 1)
(285 =328, + W)
(L5 + T4

-2 -26)
(23 - 221‘ + '|Tu)
('lTZ - ‘|T3)

(22 - 223 + '|T1)
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+0°700 048
-0.00 045
-0.00 041
-0.00 038
-0.00033
-0.00032
40.00 030

sin
sin
sin
sin
sin
sin

sin

ASTRONOMICAL ALGORITHMS

(23 - 221‘ + TT3)

(285 - 385 + 1y)

(my = m,)

26

(= M, + Wy — w,)
(383 =78, +27m3 +27,)
A(Z:;—Z[‘)

Call I3 the sum of these terms.

Satellite

+0°84 109
+0.03 429
-0.03 305
-0.03211
-0.01 860
+0.01 182
+0.00 622
+0.00 385
-0.00 284
-0.00233
-0.00 223
-0.00208
+0.00177
+0.00 134
+0.00 125
-0.00117
-0.00 112
+0.00 106
+0.00 102
+0.00 096
+0.00 087
-0.00 087
+0.00 085
-0.00 081
+0.00071
+0.00 060
-0.00 056
-0.00 055

sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin

IV

(ZQ_TT[.)

(TTQ_TT3)

2(y-1)

G

(ZI‘_'IT3)

(w_wu)

L, +m,-26-21)
208, - 1)

(56" - 2G + 52°.225)
2 (¢ —‘”Q)
([—3_2“)

L, -m

(b+w, -2m,)
(’ITI‘—H)
2(8, -6 -1)

2G

2(23 “21‘)

(383 =72, +4m,)
£, -6-1)
(Zzu‘w _U’u)

2 (¢ - U’Q)

(385 -78, + 3+ 3m,)
£y =28, + 1)
2([—1, - 111)

(ZQ“}'TTu ‘ZH-BG)
(-2,

(111 - U’3)

([,3 - Zﬂu + ‘IT3)

Call Z4 the sum of these terms.

-0.00029
+0.00029
+0.00 026
+0.00024
4+0.00 021
-0.00021
+0.00 017

+0°00051
+0.00 042
+0.00039
+0.00 036
+0.00 035

-0.00035

-0.00032
+0.00 030

+0.00 030
+0.00 028

-0.00028
~0.00027
-0.00026

+0.00025
-0.00025
-0.00023
+0.00021
-0.00021
+0.00019
-0.00019
-0.00018
-0.00016

The true longitudes of the satellites are

= [, + 11,

L,=02,+7122,

L3 =£3+23,

sin
sin
sin
sin
sin
sin
sin

sin
sin
sin
sin
sin

sin

sin
sin

sin

sin

sin
sin
sin

sin
sin
sin
sin
sin
sin
sin
sin
sin

(wy+ $-21 -26)
(L4 +m, -21 - 26)
(23 - H -G)

(£, - 385 +22,)
28, -1 -6)
(23 - 1T2)

2(L5 - 13)

(22_21‘)
2(y-6-1)
2(m, - w,)

(W+0 -1, -w,)
(26° - ¢
+188°.37)
L,-m, +21
-29)
Ly+ 7, -20 -6)
(38, - 78, + 21,4
+2m,)
(26" - 26
+ 149°.15)
(2“— My +2¢
-21)
202, - wy)
(Mg =~ Ty + w3 ~w,)
(56" - 3¢
+188°.37)
(w, - wy)
(L, -384 +22,)
3 (85 -L2,)
(22, -21 -3¢6)

(283 -3L, +w,)
(Zu - My G)
(28, - M3 - m,)
£, -, +6)

(L +y~20 -26)

Lu=2,,+ T4
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PERIODIC TERMS FOR THE LATITUDES OF THE SATELLITES

The sum of the following terms gives the tangent of the
satellite's latitude B; with respect to Jupiter's equatorial plane.

Satellite I +0.

+0.
,000 0329
-0.
+0.
+0.
+0.

+0

Satellite II +0.
+0.
-0.
+0.
+0.
+0.
-0.
+0.
-0.

Satellite III +0.
~0.
+0.

.000 2806

+0.

+0.

-0.

-0.

+0.

+0.

.000 0021

~0

-0

Satellite IV -0.
+0.
-0.
+0.
+0.
-0.
+0.
.000 0038

-0

000 6502
0001835

000 0311
000 0093
000 0075
0000046

008 1275
000 4512
000 3286
000 1164
0000273
0000143
0000143
000 0035
0000028

003 2364
0016911
000 6849

0000321
000 0051
0000045
000 0045
000 0037
0000030

007 6579
004 4148
0005106
0000773
000 0104
000 0102
000 0088

sin
sin
sin
sin
sin
sin
sin

sin
sin
sin
sin
sin
sin
sin
sin
sin

sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin

sin
sin
sin
sin
sin
sin
sin
sin

(Ll - (“)1)
(Ll - 0)2)
(Ll - (1)3)
(Ll - w)

(Ll - wt‘)

(3L - 48, -1.9927 21 + w,)
(Ly+9 -20 -26)

(L;)_ - wz)
(LZ = (1)3)
(Ly - 9)
(Lz - (1)1‘)

(£1 - 2843 +1.0146 22 + w,)
(L, +9 -2T - 26)
(Lz_wl)

(Ly -y +6)

(£, -283 +1.0146 £2 + w3)

(L3 - w3)

(L3 = w)

(L3 - wl‘)

(Ly — wy)

(Ly + ¢ - 20 - 26)
(L3 - ‘b +G)

(L3 - w ‘G)

(Ly + ¢ -20)

(Ly + ¢ - 20 -36)

(28, - 3L5 +4.03 3 + w,)
(28, - 3L5 +4.03 £3 + wy)

(Lh'd))
(L, = wy)
(L, - w3)

(L, +¥ - 20 - 26)
(L, -V +6)

(Ly =¥ -6)

(L, +¥v -2I - 36)
(L, +¥ -20 -6)
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PERIODIC TERMS FOR

Satellite

Satellite

Satellite

Satellite

I

II

III

Iv

-0.
-0.
-0.
+0.
-0.
-0.
+0.
-0.

+0.
-0.
-0.
-0.
+0.
+0.
-0.
+0.
+0.
-0.
-0.

-0.
-0.
+0.
-0.
+0.
-0.
+0.
-0.
+0.
-0.

-0.
+0.
+0.
-0.
-0.
+0.
+0.
~-0.
+0.
-0.
+0.
+0.

ASTRONOMICAL ALGORITHMS

THE RADIUS VECTOR

0041339
0000395
0000214
0000170
0000162
0000130
0000106
000 0063

009 3847
0003114
0001738
0000941
0000553
0000523
000 0290
0000166
000 0107
0000102
000 0091

0014377
0007904
000 6342
000 1758
000 0294
0000156
000 0155
0000153
000 0070
000 0051

007 3391
000 1620
0000974
000 0541
000 0269
0000182
0000177
0000167
0000167
0000155
0000142
0000104

cos
cos
cos
cos
cos
cos
cos
cos

cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos

cos
cos
cos
cos
cos
cos
cos
cos
cos
cos

cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos

2 (21_22)
(21_ TT3)
(21' nh)
(21_22)
(‘e]__ nl)
[0 (21_22)
Ly - £3)
(8, + 13 -20 - 26)
(2, - £;)
(22"”3)
([—2_‘”1‘)
(22“'”2)
£y - £3)
(21‘23)
2(8,-£2,)
2 (2, - wy)
(21 - 223 + m3)
(£, - 7))
28, -£3)
(23—‘”3)
(23—W&)
(£, - £5)
2(8,-4,)
(£5-£,)
3(8,-4,)
(21'23)
(2, - £5)

(22, - 385 + my)
(L4 41y -20 - 26)

(21“ TTA)

(ZQ - ‘”3)

([—3 - [,Q)

(£, + m, - 21 -26)
2(8,-m)
([,,. _n)
2(8y - 2,)
(224 -y - wz,,)
(lj} - wg)

2(L, -1 -6)
2 (214 - 111)
(2, - £,)
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Satellite IV +0.0000092 cos (£, - £,)

(cont.) -0.0000089 cos (£, -1 -G)
-0.0000062 cos (£, + w, - 20 - 36)
+0.000 0048 cos 2 (£, - w,)

The radius vector R; of satellite No. i, in equatorial radii of
Jupiter, is given by
Rj = a; x {1 + sum of periodic terms)

with the following values for the mean distances :

satellite T a; = 5.90730
11 a, = 9.39912
IIT  a, = 14.99240
v a, = 26.36990

If JDE is the Julian Ephemeris Day corresponding to the given
instant, calculate

p = JDE - 2433282.423
° 36525

Then the precession in longitude from the epoch B1950.0 to the
date, in degrees, is given by

P = 1.3966626 7, + 0.0003088 72
Add P to the four longitudes L; and to .
Inclination of Jupiter's axis of rotation on the orbital plane:
I = 3°.120262 + 0°.0006 T
where T is the time in centuries since 1900.0.

For each of the four (i = 1 to 4) satellites, we have found the
tropical longitude L;, the equatorial latitude Bj, and the radius
vector R; (in equatorial Jupiter radii).

For each of them, calculate
X; = R; cos(Lj -~ ¥) cos B;
Yi = Rj Sin(Li - Ib) cos Bj
Z;j = Rj sin B;
Now consider a 'fifth, fictitious satellite', situated at unit
distance from the center of Jupiter, above the planet's north pole t
X5=0, Y5=0, 25=1'
This fictitious satellite will be needed later.
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To obtain the apparent rectangular coordinates of the satellites
as they appear on the celestial sphere, as defined at the beginning
of this Chapter, several rotations must be performed. So, calculate
the following for all five satellites (the four real ones and the
fifth, fictitious satellite):

Rotation towards Jupiter's orbital plane:
A, =X
By YcosI - Zsin1
Cq YsinI+ ZcosI

Rotation towards the ascending node of the orbit of Jupiter :

A, = Ay cos d® - By sin @
B, = A; sin ® + By cos ¢
Cyp = Cy

where ¢ =y - @, § being the longitude of the node of Jupiter,
referred to the mean equinox of the date. See in Table 30.A, under
'Jupiter', the formula for Q. '

Rotation towards the plane of the ecliptic :
Ay = Ay
By = By cos i - Cp sin i
Cy = By sin1 + C, cos i

where 1 is the inclination of the orbit of Jupiter on the ecliptic.
See in Table 30.A the expression for i.

Rotation towards the vernal equinox :
A, = 43 cos § - By sin Q
B, = A3 sin Q + B3 cos §
C, = Cy

Then calculate

Ag = A, sin A - B, cos A
By = A, cos A + B, sin A
Cs = Cp = C4

A = Ag
Bg = Cg sin a + Bsg cos O
Cg = Cg cos @ — Bg sin Q

If £, n are the values of Ay and Cg for the 'fifth satel-
lite', that is, & =2a4(5), n = Cc(5), then calculate the angle

D = ATN2 (§, n)

where, as mentioned earlier in this book, ATN2 is the 'second' arc-
tangent function, giving the angle D in the proper quadrant.
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Calculate
X = Agcos D — Cg sin D
Y = A sin D + Cg cos D (43.3)
Z = Bg

X and Y are the required apparent rectangular coordinates of the
satellite, as defined at the beginning of this Chapter. The quanti-
ty Z is negative if the satellite is closer to the Earth than Jupi-
ter, positive if it is more distant than Jupiter.

However, to obtain full accuracy, the apparent coordinates X and
Y just obtained should be corrected for two effects:

1. differential light~time : if a
satellite is on the nearer half
of its orbit, its light-time is
smaller than that of Jupiter;

if on the far half, its light-
time is larger. The correction
to be added to X is

{—IZ{'— Y1 - (x/R)?

where

K = 17295 for satellite I

21819 ~ IT
27558 - IIT
36548 - v

This correction is zero at the
greatest elongations, and positive
in all other cases. It is always
very small, being at most 0.0003
for satellite I, or 0.0007 for
satellite IV. The correction to
Y is negligible. In the formula
above, R is the radius vector of
the satellite, while X and 2 are
the values given by (43.3).

2. the perspective effect, which
is due to the fact that Jupiter
is not situated at an infinite
distance from the Earth. This is
illustrated by the figure at the
right, showing the orbits of two
satellites around Jupiter (not
to scale!). Although satellites
A and B have equal X-coordinates
in space (distances AA' and BB’
are equal), they are not exactly
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in conjunction as seen from the Earth: their apparent X-coordinates
are not equal.

To correct for this perspective effect, the X and Y values ob-
tained thus far should be multiplied by the factor

A

W = TA ¥ 272005

where A is Jupiter's distance to Earth in astronomical units as
given by (43.2), while Z is in Jupiter radii (43.3). The constant
2095 is the number of equatorial radii of Jupiter in one astronomi-
cal unit.

Example 43.b — Same instant as in Example 43.a.

We shall not give the details of the calculation. Let us just
mention the values of the sums

1
L4

]

-0°.01171, L2 = +1°.09596, L3 = +0°.03879,
+0°.58932,

]

and the final results :

Satell. I Satell. II Satell. TIIT Satell. IV
X -3.4515 +7.4435 +1.1996 +7.0754
Y +0.2138 +0.2756 +0.5903 +1.0294

Mutual conjunctions — Two satellites are in conjunction when their
X-coordinates are equal. The difference between the Y-coordinates
then corresponds to the separation of the satellites. 0Of course, if
one satellite (or both) is eclipsed or occulted by Jupiter, the con-
junction is inobservable.

Conjunctions with Jupiter — A satellite is in inferior conjunction
with Jupiter when its X-coordinate is zero and changing from nega-
tive to positive; its Z-coordinate is then negative.

Similarly, a satellite is in superior conjunction with Jupiter
when its X-coordinate, passing from positive to negative, becomes
zero. Its 2-coordinate is then positive.

Exercise. — On 1988 November 23, satellites III and IV were almost
simultaneously in conjunction with Jupiter. Confirm this with your
program. Take AT from Table S.A.

Answer : Satellite TIII was in inferior conjunction with Jupiter
on 1988 November 23, at 7928% UT; at that instant, its Y-value was
-0.8045; the satellite was in transit over the planet's disk.

Satellite IV was in superior conjunction that same day, at 5P15m.
Its y-value was then +1.3995. Since this is larger than the polar
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radius of Jupiter (0.933), the satellite was not occulted, but was
visible above the planet's northern polar regions.

Satellite phenomena — The X and Y coordinates are the basic data
for the calculation of the satellite phenomena: occultations behind
Jupiter, and transits across the planet's disk. If the calculations
are made for the center of the satellite, then an occultation or a
transit begins or ends when the distance d of the satellite to the
center of Jupiter's disk, given by d? = X2 + ¥?, is equal to the
planet's radius p at the point of contact. Due to Jupiter's flat-
tening, p varies between 1 (at the equator) and 0.933 (at the po-
les). One can avoid working with an elliptical disk by 'stretching®
the scale vertically: multiply the Y-values by the factor 1.071374,
leaving the X-values unchanged :

v, = 1.071374 ¥

Jupiter's disk then becomes exactly circular, and the condition
for the beginning or end of an occultation or of a transit becomes
X2 +y,% = 1.

In the case of an occultation, it remains to be checked whether
the satellite is visible at the time of its immersion or emersion,
because it could be eclipsed in the shadow of the planet.

Eclipses and shadow transits can be calculated in the same way,
except that one should replace X and Y by the apparent coordinates
X, and Y, as seen from the Sun. These coordinates are obtained by
putting R =0 in expressions (43.1). Moreover, the light-time T
to the Earth should be added to the true times of the eclipses or
to those of the shadow transits, because we on Earth see these
events later by the amount tT. Finally, in the case of an eclipse
it remains to be checked whether the disappearance or the reappea-
rance is visible from Earth: indeed, the satellite could be occul-
ted by Jupiter at that instant.
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Chapter 44

The Ring of Saturn

In this Chapter, the following symbols will be used with respect to
the ring of Saturn. (Of course, we know that Saturn has many rings.
But they form one single, compact, planar system. We shall use the

word ring, in singular form, to denote the ring system.)

B = the Saturnicentric latitude of the Earth referred to the plane
of the ring, positive towards the north; when B is positive,
the visible surface of the
ring is the northern one;

B' = the Saturnicentric latitu-
de of the Sun referred to Direction of
the plane of the ring, po- the northern
sitive towards the north; celestial pole
when B' is positive, the
illuminated surface of the
ring is the northern one; P

P = the geocentric position an-
gle of the northern semi-
minor axis of the apparent
ellipse of the ring, mea-
sured from the North to-
wards the East (see the
Figure). Because the ring
is situated exactly in
Saturn's equator plane,

P is also the position
angle of the north pole
of rotation of the planet;

a, b = the major and the minor axes of the outer edge of the outer
ring, in arcseconds.

In the calculation of these quantities, the effect of light-time
should be taken into account. Moreover, to obtain full accuracy, the

301
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aberration of the Sun as seen from Saturn must be taken into ac-
count in the calculation of B’'; and in the calculation of P one
should take into account the effect of the nutation and Saturn's
aberration.

G. Dourneau {1] gives the following values for the inclination of
the plane of the ring and the longitude of the ascending node refer-
red to the ecliptic and mean equinox of B1950.0 :

28°.0817
168°.8112

0°.0035
0°.0089

i
9]

+
+

]

From these values, we deduce the following expressions to calcu-
late i and 2 referred to the ecliptic and mean equinox of the date:

28°.075216 - 0°.012998 T + 0°.000 004 T2
169°.508 470 + 1°.394681 T + 0°.000412 72

D
il

(44.1)

where T is the time from J2000.0 in Julian centuries, as given by
formula (21.1). In expressions (44.1), we retained extra decimals
in order to avoid loss in accuracy.

For a given instant ¢, the values of B, B'

lated as follows.

, etc., can be calcu-~

1. Calculate i and by means of (44.1).

2. Calculate the heliocentric longitude 1,, latitude b, and radius
vector R of the Earth, referred to the ecliptic and mean equinox
of the date, FK5 system, for instance by using the relevant data
of Appendix II and the precepts given in Chapter 31.

3. Calculate the corresponding coordinates 1, b, r for Saturn, but
for the instant t - T, where T is the light-time from Saturn to
the Earth, as given by (32.3). Because Saturn's distance A is
not known in advance, it should be found by iteration — see
Step 4. One may use A =9 as a starting value, since Saturn's
distance to the Earth is always between 8.0 and 11.1 AU.

4. Calculate

x = rcosb cosl - Rcos 1,
y = rcosb sinl - R sin I,
z = r sinb - R sin b,

Then Saturn's distance A to the Earth is
A= J/x2+y?+2z2 >0

5, Calculate the geocentric longitude A and latitude B of Saturn
from

y -z

tan)\=x tan8=m



10.

11.

12.
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sin B = sini cos B sin(A-R) - cos i sin B

"
375735 b = a sin |B|

A
Factor by which the axes a and b of the outer edge of the outer
ring are to be multiplied to obtain the axes of :

Inner edge of outer ring 0.8801
Outer edge of inner ring 0.8599
Inner edge of inner ring 0.6650
Inner edge of dusky ring 0.5486

. Calculate the longitude N of the ascending node of Saturn's or-

bit from
N = 113°,6655 + 0°.8771 T

Then correct 1 and b for the Sun's aberration as seen from
Saturn :

1' =1 - 0°.01759/r

b’ = b - 0°.000764 C"—S(—j—'ﬂ

i}

sin B' = sin i cos b’ sin(1'-Q) - cos i sin b’

. For the calculation of Saturn's magnitude (see Chapter 40), we

need the quantity AU, the difference between the Saturnicentric
longitudes of the Sun and the Earth, measured in the plane of
the ring.

can U. = sin i sinb’' + cos i cos b’ sin (1' - Q)
n cos b’ cos (1'-§Q)
_ sini sinf + cos i cos B sin (A - Q)
tan U, = cos B cos (A~ Q)
AU = |U;~Uyl, to be expressed in degrees.

AU is a small angle, equal to at most 7°.

Calculate the nutations in longitude (AYy) and in obliquity (4¢)
and then the true obliquity of the ecliptic £ (see Chapter 21).
For the nutation, only the most important terms may be used; an
accuracy of, say, 0'".01, is unnecessary.

Find the ecliptical longitude A, and latitude B, of the northern
pole of the ringplane from

Ao = £ - 90°, B, = 00° - i

Correct A and B for the aberration of Saturn :



304 ASTRONOMICAL ALGORITHMS

correction to A: +0°.005 693 cos (1o = A)
cos B

correction to B: +0°.005693 sin (I,~ A) sin B

13. Add Ay to A, and to A.

14. Transform (A,, B,) and (XA, B) to the equatorial coordinates
(ay, 6,) and (a, 6), by means of formulae (12.3) and (12.4),
using for € the true obliquity obtained in Step 10.

15. The position angle P is given by

cos 8§, sin (o, - a)
sin 6, cos § - cos 8§, sin § cos (a, - a)

tan P =

Example 44.2a — Calculate the quantities concerning the appearance
of Saturn's ring on 1992 December 16, at OR UT.

The instant corresponds to JD = 2448 972.5. For the difference
between Dynamical Time and Universal Time, we use the value AT =
+59 seconds = +0.00068 day, so that the instant corresponds to
1992 December 16.00068 TD = JDE 2448 972.50068.

Step 1. T = -0.070431193
i = 28°076131
Q = 169°410 243

Step 2. From an accurate ephemeris, calculated by using the com-
plete VSOP87 theory, we deduce

1, = 84°17'08".53 84°.285703
b, = 071 +0°.000 197
R = 0.98412316

1]
]

Step 3. The following geometric heliocentric coordinates of Saturn,
referred to the ecliptic and mean equinox of the date, are
taken from an accurate ephemeris :

TD 1 b r
1992 Dec. 15.0 319°09 44”23 -1°04'26"52 9.868 0846
16.0 319 11 36.61 -1 04 30.92 9,867 8690
17.0 319 13 28.99 -1 04 35.31  9.867 6534

Using A =9 as a first approximation for Saturn's distance,
formula (32.3) yields T = 0.05198. Hence,

1992 December 16.00068 - 0.05198
1992 December 15.94870 TD.

t-T

]

For this instant we find, by interpolation of the values
tabulated above,

1 =319°191900, b= -1°075192, r =9.8678801.
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+7.369 7225 A = 10.464 6006
-7.4270295
-0.1851696

X

Yy
z

With this value for A, we obtain the new value T = 0.06044
day for the light-time; hence,

t-T 1992 December 16.00068 - 0.06044

1992 December 15.94024 TD.

For this instant we find, by interpolation of the tabulated
values,

1 =319°.191636, b= -1°075183, r = 9.8678819.

x = +7.369 6942 A = 10.464 6059
y = ~7.427 0651
z = -0.1851681

This new value of A gives T = 0.06044 again, so no new
iteration is needed.

314°.777 850
-1°.013 885

+16°. 442
35".87
1015
113°.6037
319°.189 853
-1°.075113

B'= +14°.679

153°.2645
149°.0663
4°,198

+16".86
-1"79
23°26'22".96 = 23°.43971
79°.410 243
61°.923 869

314°.774 228
-1°.013 963

79°.414 926
314°,778911

o, 40°.36365 o = 317°.55421
§, = +83°.48486 § = -17°.37056

P = +6°.741

oo nn

Wonon

A
B
B
a
b
N
1!
b’

<
™
oW

| [

Ao
BO

corrected A
corrected B

o

corrected A,
corrected A

nu

non
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Chapter 45

Position of the Moon

In order to calculate accurately the position of the Moon for a gi-
ven instant, it is necessary to take into account hundreds of peri-
odic terms in the Moon's longitude, latitude and distance. Because
this is outside the scope of this book, we shall limit ourselves to
the most important periodic terms; the accuracy of the results will
be approximately 10" in the longitude of the Moon, and 4" in its
latitude.

Using the algorithm described in this Chapter, one obtains the
geocentric longitude A and latitude B of the center of the Moon,
referred to the mean equinox of the date, and the distance A, in
kilometers, between the centers of Earth and Moon. The equatorial
horizontal parallax m of the Moon can then be obtained from

sin T = 6378.14

A

The periodic terms given in this Chapter are based on the Chap-
ront ELP-2000/82 lunar theory {1]. However, for the mean arguments
L', D, M, M', F the improved expressions given later by Chapront [2]
have been used.

For the given instant (Dynamical Time), calculate T by means of
formula (21.1). Remember that T is expressed in centuries, and thus
should be taken with a sufficient number of decimals (at least nine,
since during 0.000000 001 century the Moon moves over an arc of 1.7
arcseconds).

Then calculate the angles L', D, M, M’', and F by means of the
following expressions. The angles so calculated will be expressed
in degrees. In order to avoid working with large angles, reduce
them to less than 360°.

Moon's mean longitude, referred to the mean equinox of the date,
and including the constant term of the effect of light-time :
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L' = 218.316 4591 + 481267.88134236 T

45.1
- 0.0013268 72 + 72/538841 - 7%/65194 000 ( )
Mean elongation of the Moon :
D = 297.850 2042 + 445267.1115168 T (45.2)
- 0.0016300 72 + 73/545868 - T%/113 065000 )
Sun's mean anomaly :
M = 357.5291092 + 35999.0502909 T (45.3)
- 0.0001536 T2 + T3/24 490000 ’
Moon's mean anomaly :
M' = 134.9634114 + 477198.8676313 T (45.4)
+ 0.0089970 72 + 72/69699 - T/14712000 )
Moon's argument of latitude (mean distance of the Moon
from its ascending node) :
F = 93.2720993 + 483202.0175273 T (45.5)

~ 0.0034029 72 ~ 73/3 526000 + T%/863 310000

Three further arguments (again, in degrees) are needed :
A; = 119°75 + 131°.849 T

A, = 53°.09 + 479264°.290 T
Ay 313°.45 + 481 266°.484 T

3

Calculate the sums Z1 and Ir of the terms given in Table 45.A,
and the sum b of the terms given in Table 45.B. The argument of
each sine (for £1 and Zb) and cosine (for Ir) is a linear combina-
tion of the four fundamental arguments D, M, M’ and F. For example,
the argument on the eight line of Table 45.A is 2D - M - M’', and the
contributions to %1 and Ir are +57066 sin (2D~M-M') and
-152138 cos (2D - M - M'), respectively.

However, the terms whose argument contains the angle M depend on
the eccentricity of the Earth's orbit around the Sun, which present-
ly is decreasing with time. For this reason, the amplitude of these
terms is actually variable. To take this effect into account, mul-
tiply the terms whose argument contains M (or -M) by E, and those
containing 2M (or -2M) by E?, where

E =1 - 0.002516 T - 0.0000074 T2 (45.6)

Moreover, add the following additive terms to X1 and to Lb. The
terms involving A, are due to the action of Venus, the term invol-
ving A, is due to Jupiter, while those involving L’ are due to the
flattening of the Earth.
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45.A
Periodic terms for the longitude (1) and distance (Zr) of the
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Moon. The unit is 0.000001 degree for £1, and 0.001 km for Ir.
Argument I1 Ir
Multiple of Coefficie?nt of the Coefficier.lt of the
sine cosine

D M M F of the argument of the argument
0 0 1 0 6288774 ~20 905 355
2 0 -1 0 1274 027 -3699111
2 0 0 0 658 314 ~2955968
0 0 2 0 213618 -569925
0 1 0 0 -185116 48 388
0 0 0 2 -114 332 -3 149
2 0 -2 0 58793 246158
2 -1 -1 0 57 066 -152138
2 0 1 0 53322 -170733
2 -1 0 0 45758 -204 586
0 1 -1 0 ~40923 -129620
1 0 0 0 -34720 108 743
0 1 1 0 -30383 104 755
2 0 0 -2 15 327 10321
0 0 1 2 -12528

0 0 1 -2 10980 79 661
4 o -1 0 10675 -34782
0 0 3 0 10034 -23210
4 0 -2 0 8548 -21636
2 1 -1 0 -7888 24208
2 1 0 0 -6 766 30824
1 0 -1 0 -5163 ~8379
1 1 0 0 4987 -16675
2 -1 1 0 4036 -12831
2 0 2 0 3994 -10445
4 0 0 0 3861 -11650
2 0 -3 0 3665 14403
0 1 -2 0 -2 689 -7003
2 0 -1 2 -2602

2 -1 =2 0 2390 10056
1 0 1 0 -2 348 6322
2 -2 0 0 2236 -9 884
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TABLE 45.A

{cont.)

Argument

Multiple of
D M M F

1

Coefficient of the

sine

of the argument

Ir

Coefficient of the

cosine

of the argument

a 1 0
0 2 0
2 =2 - 0
2 0 -2
2 0 2
4 -1 -1 O
6 o 2 2
3 0 -1 0
2 1 1 o0
4 -1 -2 0
0 2 -1 0
2 2 -1 0
2 1 -2 0
2 -1 o0 -2
4 0 0
c 0 4 0
4 -1 0 ©
1 0 -2 ©
2 1 0 -2
0o 0 2 -2
1 1 1 0
3 0 -2 ©
4 0 -3 0
2 -1 2 o0
o 2 1 o©
1 1 -1 0
2 0 3 o0
2 0 -1 =2

-2120
-2069
2048
-1773
-1595
1215
-1110
-892
~-810
759
-713
=700
691
596
549
537
520
—-487
-399
=381
351
-340
330
327
—-323
299
294

5751

-4 950
4130

-3958

3258
2616
-1897
-2117
2354

-1423
-1117
-1571
-1739

-4 421

1165

8752
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TABLE 45.B

Periodic terms for the latitude of the Moon (Ib).
The unit is 0.000001 degree.

Argument b Argument b
Multiple of coegic;jgz of Multiple of coeflf;c;f:;: of

D M M F of the argument D M M F of the argument
0 0 0 1 5128122 0 0 1 -3 777
0 0 1 1 280602 4 0 -2 1 671
o 0 1 -1 277 693 2 6 0 -3 607
2 0 0 -1 173237 2 0 2 -1 596
2 0 -1 1 55413 2 -1 1 -1 491
2 0 -1 -1 46271 2 0 -2 1 =451
2 0 O 1 32573 Q 0 3 -1 439
o 0 2 1 17 198 2 0 2 1 422
2 0 1 -1 9266 2 0 -3 -1 421
60 0 2 -1 8822 2 1 -1 1 -366
2 -1 0 -1 8216 2 1 0 1 -351
2 0 -2 -1 4324 4 0 0 1 331
2 0 1 1 4 200 2 -1 1 1 315
2 1 0 -1 -3359 2 =2 0 -1 302
2 -1 -1 1 2463 0 0 1 3 -283
2 -1 o0 1 2211 2 1 1 -1 -229
2 -1 -1 -1 2065 1 1 0 -1 223
0 1 -1 -1 -1870 1 1 0 1 223
4 0 -1 -1 1828 0 1 -2 -1 -220
0 1 0 1 -1794 2 1 -1 -1 -220
0 o o 3 -1749 1 0 1 1 -185
0 1 -1 1 ~-1565 2 -1 -2 -1 181
1 0 o 1 -1491 0 1 2 1 ~177
0 1 1 1 -1475 4 0 -2 -1 176
0 1 1 -1 -1410 4 -1 -1 -1 166
6 1 0 -1 -1344 1 0 1 -1 -164
l1 0 0 -1 -1335 4 0 1 -1 132
¢ 0 3 1107 1 0 -1 -1 -119
4 0 0 -1 1021 4 -1 0 -1 115
4 0 -1 833 2 -2 0 1 107
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Additive to X1 :

+3958 sin 4,
+1962 sin (L* ~ F)
+ 318 sin A4,

Additive to Ib:

-2235 sin L'

+ 382 sin Aq

175 sin (&, - F)
175 sin (4, + F)
127 sin (L' - M')
115 sin (L' + M")

U+ + +

The coordinates of the Moon are then given by

X1

A =L + 1000000 (in degrees)
Lb .
B = 1000000 (in degrees)

A 385 000.56 + ‘1“02_56 (in kilometers)

Dividing the sums by 10% or by 103 is needed because in Tables
45.A and 45.B the coefficients are given in units of 107® degree or
of 10°3 kilometer.

Example 45.a — Calculate the geocentric longitude, latitude, dis-
tance, and equatorial parallax of the Moon on 1992
April 12, at Oh TD.

We find successively :

JDE = 2448 724.5 A, = 109°.57
T = -0.077 221 081 451 A, = 123°.78
L'= 134°.290186 Ay = 229°,53
D = 113°.842 309 E = 1.000194
M = 97°643514 Y1 = -1127527 | with the ad-
M'=  5°150839 Lb = -3229127 } ditive terms
F = 219°.889726 Ir = -16590875

From which we deduce

A = 134°.290186 - 1°127527 = 133°.162659

B = =-3°229127 = -3°13'45"

A = 385000.56 - 16590.875 = 368409.7 km

m = arcsine (6378.14/368409.7) = 0°.991990 = 0°59'31".2

The apparent longitude of the Moon is obtained by adding to A the
nutation in longitude (AY), which is equal to +16'.595 = +0°.004 610
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(Chapter 21). Consequently,

133°.162 659 + 0°.004 610
133°.167 269
133°10'02"

apparent A

mon

For the given instant, the true obliquity of the ecliptic is
(Chapter 21)

€ = €, + Ae = 23°26'26".29 = 23°.440636
The Moon's apparent right ascension and declination are then
found by means of expressions (12.3) and (12.4) :
o = 134°.688 473 = 8h58m458,2
= +13°,768366 = +13°46'06"

The exact values, obtained by using the complete ELP-2000/82
theory, are :

A = 133°10'00" o = 8h58m458,1
B = =-3°13'45" 8§ = +13°46' 06"
A = 368405.6 km m = 0°59'31".2

Lunar node and lunar perigee

According to Chapront [2], the longitude of the (mean) ascending
node § and that of the (mean) perigee m of the lunar orbit, in de-
grees, are given by

= 125.044 5550 - 1934.1361849 T + 0.0020762 72 (45.7)
+ 73/ 467410 - T%/60616 000 )
m = 83°3532430 + 4069.0137111 7 - 0.010 3238 72

- 73/80053 + T4/18 999 000

where T has the same meaning as before. These longitudes are tro-
pical, that is, they are measured from the mean equinox of the date.

From the formula for 2 we can find the instants when the (mean)
ascending or descending node of the lunar orbit coincides with the
vernal equinox, that is, when £ is equal to 0° or to 180°, respec-
tively. During the period 1910-2110, this occurs at the following
dates :
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Q = 0° Q = 180°
1913 May 27 1922 Sep 16
1932 Jan 6 1941 Apr 27
1950 Aug 17 1959 Dec 7
1969 Mar 29 1978 Jul 19
1987 Nov 8 1997 Feb 27
2006 Jun 19 2015 Oct 10
2025 Jan 29 2034 May 21
2043 Sep 10 2052 Dec 30
2062 Apr 22 2071 Aug 12
2080 Dec 1 2090 Mar 23
2099 Jul 13 2108 Nov 3
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Chapter 46

Illuminated Fraction of the Moon’s Disk

The illuminated fraction k of the disk of the Moon depends on the
selenocentric elongation of the Earth from the Sun, called the phase
angle (i). Selenocentric means "as seen from the center of the Moon".

NCS = illuminated limb
N = northern cusp
S = southern cusp
C = midpoint of the
illuminated limb
NOS = line of cusps
NBS

#

terminator
(an ellipse)

Illuminated fraction k

= ratio of lengths BC:AC

= ratio of the areas
NBSC : NASC

The formula is

kK = i_.'*%os_l_ (46.1)

and this is the value of both the
ratio of the illuminated area of
the disk to the total area, and
the ratio of the illuminated Iength
of the diameter perpendicular to

the line of cusps to the complete
diameter (see the Figure).

The phase angle 1 of the Moon,
for a geocentric observer, can be
found as follows. First, find the
geocentric elongation ¥ of the
Moon from the Sun by means of one
of the relations

cos Y = sin §, sin §
+ cos 6§, cos § cos(o,—-0a)

(46.2)

cos Y = cos B cos (A -1A,)

where a,, 6,5 A, and a, 8, A are
the geocentric right ascensions,
declinations and longitudes of the
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Sun and the Moon, respectively, and f the geocentric latitude of the
Moon. Then we have
. R sin ¥

tan i = —S——— 7 (46.3)
where R is the distance Earth-Sun, and A the distance Earth-Moon,
both in the same units, for instance in kilometers. The angles V¢
and i are always between 0 and 180 degrees. Once i is known, the
illuminated fraction k can be obtained by means of formula (46.1).

0Of course, for the calculation of k it is not needed to calculate
the geocentric positions of the Moon and the Sun with high precision.
An accuracy of, say, 1' will be sufficient.

If no high accuracy is required, it will suffice to put cos i =
-cos Y. The resulting error in k will never exceed 0.0014,

Lower accuracy, though still a good result, is obtained by ne-
glecting the Moon's latitude and by calculating an approximate value
of i as follows :

i=180° - D - 6°289 sin M’

2°,100 sin M

1°.274 sin (2D - M'") (46.4)
- 0°.658 sin 2D

- 0°.214 sin 2M’'

- 0°110 sin D

+

where the angles D, M and M’ can be found by means of formulae
(45.2) to (45.4). 1In this case, the geocentric positions of the
Sun and the Moon are not needed.

Position Angle of the Moon's bright limb

The position angle of the Moon's bright limb is the position
angle X of the midpoint of the illuminated limb of the Moon (C in
the Figure on page 315), reckoned eastward from the North Point of
the disk (not from the axis of rotation of the lunar globe). It
can be obtained from

cos &, sin (a,-a)
sin §, cos § - cos §, sin & cos (0, - )

tan ¥ (46.5)

where a,, 6,, & and § have the same meaning as before.

The angle x 1is in the vicinity of 270° near First Quarter, near
90° after Full Moon. The angle X 1is found in the correct quadrant
by applying the ATN2 function to the numerator and the denominator
of the fraction in formula (46.5) — see 'the correct quadrant' in
Chapter 1.

If x is the position angle of the (midpoint of the) bright limb,
then the position angles of the cusps are X - 90° and x + 90°.
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The angle X has the advantage that it unambiguously defines the
illuminated limb of the Moon.

It should be noted that the angle X is not measured from the
direction of the observer's zenith. The zenith angle of the bright
limb is x - g, where g is the parallactic angle (see Chapter 13).

Finally, it should be mentioned that formula (46.5) is valid in
the case of a planet too.

Example 46.a — The Moon on 1992 April 12, at Oh TD,

From Example 45.a we have, for that instant,

o = 134°.6885
§ = +13°.7684
A = 368 408 km

The apparent position and the distance of the Sun at the same
instant are

a, = 182203759 = 20°6579

8§, = +8°41'47" = +8°.6964
R 1.002 4977 AU = 149971520 km

The first formula (46.2) then gives cos ¥ = -0.354991, whence
Y = 110°.7929. Then

tan i +2.615403 by formula (46.3)
i = 69°0756

and, by formula (46.1), k = 0.6786, which should be rounded to 0.68.

If we use the approximate relation cos i = —cos ¥, we find
k= 0.6775, which again rounds to 0.68.

Let us now use the approximate formula (46.4). In Example 45.a,
we have found for the given instant

D = 113°.8423
M = 97°.6435
M' = 5°1508

Then formula (46.4) gives i = 68°.88, whence, by (46.1),
k = 0.6802, which again rounds to 0.68.

Finally, formula (46.5) gives

tan X = %g—g%%—g—g— whence X = 285°.0







Chapter 47

Phases of the Moon

By definition, the times of New Moon, First Quarter, Full Moon and
Last Quarter are the times at which the excess of the apparent lon-
gitude of the Moon over the apparent longitude of the Sun is 0°,
90°, 180°, and 270°, respectively.

Hence, to calculate the instants of these lunar phases, it is ne-
cessary to calculate the apparent longitudes of the Moon and the Sun
separately. (However, the effect of the nutation may be neglected
here, since the nutation in longitude Ay will not affect the dif-
ference between the longitudes of Moon and Sun.)

However, if no high accuracy is required, the instants of the
lunar phases can be calculated by the method described in this Chap-
ter. The expressions are based on Chapront's ELP-2000/82 theory
for the Moon (with improved expressions for the arguments M, M’,
etc., as mentioned in Chapter 45), and on Bretagnon's and Francou's
VSOP87 theory for the Sun. The resulting times will be expressed in
Julian Ephemeris Days (JDE), hence in Dynamical Time.

The times of the mean phases of the Moon, already affected by
the Sun's aberration and by the Moon's light-time, are given by

JDE = 2451550.09765 + 29.530588853 k
+ 0.0001337 T2 (47.1)
~ 0.000000150 T3
+ 0.00000000073 T

where an integer value of k gives a New Moon, an integer increased

by 0.25 gives a First Quarter,
by 0.50 gives a Full Moon,
by 0.75 gives a Last Quarter.

Any other value for k will give meaningless results !
The value k = 0 corresponds to the New Moon of 2000 January 6. Ne-
gative values of k give lunar phases before the year 2000.
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For example,

+479.00 and -2793.00 correspond to a New Moon,
+479.25 and ~2792.75 correspond to a First Quarter,
+479.50 and -2792.50 correspond to a Full Moon,
+479.75 and -2792.25 correspond to a Last Quarter.

An approximate value of k is given by
k = (year - 2000) x 12.3685 (47.2)

where the 'year' should be taken with decimals, for example 1987.25
for the end of March 1987 (because this is 0.25 year since the be-

ginning of the year 1987). The sign = means "is approximately equal
to'".

Finally, in formula (47.1) T is the time in Julian centuries
since the epoch 2000.0; it is obtained with a sufficient accuracy
from

k

T = 1736.85

(47.3)

and hence is negative before the epoch 2000.0.

Calculate E by means of formula (45.6), and then the following
angles, which are expressed in degrees and may be reduced to the
interval 0-360 degrees and, if necessary, to radians before going
further on.

Sun's mean anomaly at time JDE :

M = 2.5534 + 29.10535669 k
-~ 0.0000218 12 (47.4)
- 0.00000011 73

Moon's mean anomaly :

M= 201.5643 + 385.816 93528 k
+ 0.0107438 72 (47.5)
+ 0.00001239 73
- 0.000000058 T4

Moon's argument of latitude :

F = 160.7108 + 390.670502 74 k

- 0.0016341 12 (47.6)
0.00000227 73
+ 0.000000011 7%

Longitude of the ascending node of the lunar orbit :

Q = 124.7746 - 1.56375580 k
+ 0.002 0691 72 (47.7)
+ 0.000002 15 73

Planetary arguments :
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= 299.

= 251

= 251.
= 349.
= 84.
= 141.
= 207.
= 154.
= 34.
= 207.
= 291.

161.
= 239.
= 331.

77
.88
83
42
66
74
14
84
52
19
34
72
56
55
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0.107408 k - 0.009173 T2

0.
26.
36.
18.
53.

2.

016 321 k
651 886 k
412 478 k
206239 k
303771 k
453732 k

7.306 860 k

27.

261239 k

0.121 824 k

.844379 k
24.
25.
.592518 k

198 154 k
513099 k

321

To obtain the time of the true (apparent) phase, add the follo-
wing corrections (in days) to the JDE obtained above.

New Moon

-0
+0.
+0.
+0.
+0.
~0.
+0.
~0.
-0.
+0.
-0.
+0.
+0.
-0.
-0.
-0.
+0.
+0.
+0.
+0.
-0.
+0.
-0.
-0.
+0.

.40720

17241
01608
01039
00739
00514
00208
00111
00057
00056
00042
00042
00038
00024
00017
00007
00004
00004
00003
00003
00003
00003
00002
00002
00002

X E

X E
X E
X g2

X E

X E

X E
X E

Full Moon

-0.40614
+0.17302
+0.01614
+0.01043
+0.00734
-0.00515
+0.00209
-0.00111
-0.00057
+0.00056
-0.00042
+0.00042
+0.00038
-0.00024
-0.00017
-0.00007
+0.00004
+0.00004
+0.00003
+0.60603
-0.00003
+0.00003
-0.00002
-0.00002
+0.00002

X E

X E
X E
X E2

X E

X E

X E
X E

x sin M’
M
2M'
2F
M' - M
M+ M
2M
M~ 2F
M' + 2F
2M' + M
3M’
M+ 2F
M- 2F
2M' - M
Q
M'+ 2M
2M’ - 2F
3M
M'+M - 2F
2M' + 2F
M'+M+2F
M'-M+2F
M' - M- 2F
IM + M

4M'
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First and Last Quarters

~0.62801 x sin M’
+0.17172 x E M

-0.01183 x E M' 4+ M
+0.00862 2M’
+0.00804 2F
+0.00454 x E M' - M
+0.00204 x g2 2M
-0.00180 M' - 2F
-0.00070 M' 4+ 2F
-0.00040 3M’
-0.00034 x E 2M' - M
+0.00032 x E M+ 2F
+0.00032 x E M - 2F
~0.00028 x E? M'+2M
+0.00027 x E 2M' + M
-0.00017 Q

-0.00005 M' - M - 2F
+0.00004 2M’' + 2F
-0.00004 M'+ M+ 2F
+0.00004 M' - 2M
+0.00003 M'+ M~ 2F
+0.00003 IM
+0.00002 2M' - 2F
+0.00002 M' - M+ 2F
-0.00002 IM'+ M

Calculate, for the Quarter phases only,

w = 0.00306 - 0.00038E cos M + 0.00026 cos M'
- 0.00002 cos (M' - M) + 0.00002 cos (M' + M) + 0.00002 cos 2F

Additional corrections :

for First Quarter : + W
for Last Quarter : -W

Additional corrections for all phases :

+0.000325 x sin A, + 0.000056 x sin Ag
165 A, 047 Ay
164 A, 042 Ajp
126 A, 040 Ay
110 As 037 Ajyy
062 Ag 035 Aqg

060 Ay 023 Ay,
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Example 47.a — Calculate the instant of the New Moon which took
place in February 1977.

Mid-February 1977 corresponds to 1977.13, so we find by (47.2)
k = (1977.13 - 2000) x 12,3685 = -282.87

whence k = -283, since k should be an integer for the New Moon
phase. Then, by formula (47.3), T = -0.22881, and then formula
(47.1) gives

JDE = 2443192.94101

With k= -283 and T = -0.22881, we further find

E = 1.0005753

M= -8234°2625 = 45°.7375
M’'= -108984°.6278 = 95°.3722
F = -110399°.0416 = 120°.9584
Q = 567°.3176 = 207°.3176

The sum of the first group of periodic terms (for New Moon) is
-0.28916, that of the 14 additional corrections is -0.00068. Con-
sequently, the time of the true New Moon is

JDE = 2443192.94101 - 0.28916 — 0.00068 = 2443192.65117,

which corresponds to 1977 February 18.15117 TD
= 1977 February 18, at 3h37mals TD.

The correct value, calculated by means of the ELP-2000/82 theory,
is 3R37m40s TD.

In February 1977, the quantity AT = TD - UT was equal to 48 se-
conds. Hence, the New Moon of 1977 February 18 occurred at 3h37m
Universal Time. See also Example 9.a, page 74.

Example 47.b — Calculate the time of the first Last Quarter of
A.D. 2044.

For ‘year' = 2044, formula (47.2) gives k = +544.21, so we shall
use the value k = +544.75.

Then, by formula (47.1), JDE = 2467 636.88595.

Sum of the first group of periodic terms (for Last Quarter) =
-0.39153.

Additional correction for Last Quarter = -W

Sum of additional 14 corrections = -0.00007.

-0.00251.

Consequently, the time of the Last Quarter is
2467 636.88595 - 0.39153 - 0.00251 - 0.00007 2467 636.49184
which corresponds to 2044 January 21, at 23b48T155 TD.
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For the period 1980 to mid-2020, we compared the results of the
method described in this Chapter with the accurate times obtained

with the ELP-2000/82 and VSOP 87 theories.

Mean error Maximum error
New Moon : 3.6 sec. 16.4 sec.
First Quarter : 3.8 15.3
Full Moon : 3.8 17.4
Last Quarter : 3.8 13.0
Mean error of all phases = 3.72 seconds

If an error of a few minutes is not important, one may, of course,
drop the smallest periodic terms and the fourteen additional terms.

The mean time interval between two consecutive New Moons is
29.530 589 days, or 29 days 12 hours 44 minutes 03 seconds. This is
the length of the synodic period of the Moon. However, mainly by
reason of the perturbing action of the Sun, the actual time inter-
val between consecutive New Moons, or lunation, varies greatly.
See Table 47.A, taken from [1].

TABLE

47 .4

The shortest and the longest lunations, 1900 to 2100

From the New Moon of to that of Duration of the lunation
1903 June 25 1903 July 24 29 days 06 hours 35 min.
2035 June 6 2035 July 5 29 - 06 - 39 -
2053 June 16 2053 July 15 29 — 06 - 35 -
2071 June 27 2071 July 27 29 - 06 -— 36 -
1955 Dec. 14 1956 Jan. 13 29 days 19 hours 54 min.
1973 Dec. 24 1974 Jan. 23 29 - 19 - 55 -

Reference

1. J. Meeus,

"Les durées extrémes de la lunaison', 1'Astronomie (So-

ciété Astronomique de France), Vol. 102, pages 288-289 (July-
August 1988).



Chapter 48

Perigee and Apogee of the Moon

In this Chapter a method is given for the calculation of approximate
times when the distance between the Earth and the Moon is a2 minimum
(perigee) or a maximum (apogee). The resulting times will be expres-
sed in Julian Ephemeris Days (JDE), hence in the uniform time scale
of Dynamical Time. Our expressions are based on Chapront's lunar
theory ELP-2000/82, with improved expressions for the arguments D,
M, etc., as mentioned in Chapter 45.

First, calculate the time of the mean perigee or apogee by the
formula

JDE = 2451 534.6698 + 27.554 54988 k

- 0.0006886 T2 (48.1)
0.000 001098 73
+ 0.0000000052 T4

where an integer value of k gives a perigee, and an integer increa-
sed by 0.5 an apogee. Important : any other value for k will
give meaningless results!

The value k = 0 corresponds to the perigee of 1999 December 22.

So, for example,

k = +318 and k= -25 will give a perigee,
k = 4429.5 and k = -1209.5 will give an apogee,
k = 4+224.87 1is an incorrect value.

An approximate value of k is given by

k = (year — 1999.97) x 13.2555 (48.2)

where the 'year' should be taken with decimals, for instance 2041,33
represents the end of April of the year 2041.

Finally, in formula (48.1) T is the time in Julian centuries
since the epoch 2000.0. It is obtained with a sufficient accuracy
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from

- Kk
T = 7375.55 (48.3)

Calculate the following angles; they are expressed in degrees and
may be reduced to the interval 0-360 degrees and, if necessary, to
radians before calculating further.

Moon's mean elongation at time JDE :

D = 171.9179 + 335.9106046 k

~ 0.0100250 T2
0.00001156 73
+ 0.000000055 7%

Sun's mean anomaly :

M = 347.3477 + 27.157 7721 k
0.0008323 72
0.0000010 73

Moon's argument of latitude :

F = 316.6109 + 364.528 7911 &
- 0.0125131 72
- 0.0000148 72

To the JDE given by (48.1), add the sum of the periodic terms of
Table 48.A, taking either those for perigee or for apogee, according
to the case.

The Moon's equatorial horizontal parallax is obtained by making
the sum of the terms given in Table 48.B.

From Tables 48.A and 48.B it appears that :

l

for the periodic terms for the instant, the sine of the argument
should be taken, while for the value of the corresponding paral-
lax the cosine must be used;

up to a given value of the coefficient, there are more periodic
terms for the perigee than for the apogee;

the successive coefficients in the same ""2D" series (for example
the terms in 2D-M, 4D-M, 6D-M, etc.) have alternate signs
for the perigee, while for the apogee all have the same sign;

— the coefficient of the largest periodic term (the term with argu-
ment 2D) is much larger in the case of the perigee than for the
apogee. As a consequence, the largest possible difference between
the time of a mean and a true passage is 45 hours for the peri-
gee, but only 13 hours for the apogee. Also, the Moon's perigee
distance varies in a larger interval (approximately between
356370 and 370350 kilometers) than does the apogee distance
(404050 to 406720 km).
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Example 48.a — The Moon's apogee of October 1988.

Because the beginning of October corresponds to 0.75 year since
the beginning of the calendar year, we put the value year = 1988.75
in formula (48.2). This gives k = -148.73. We therefore take the
value k = -148.5 (apogee!).

Formulae (48.3) and (48.1) then give
T = -0.112 029 JDE = 2447 442.8191
Then we find

D = -49710°.8070 329°.1930
M = -3685°5815 = 274°.4185

it

F = -53815°.9147 = 184°,0853
Sum of the terms in Table 48.A (apogee) = -0.4654 day
Sum of the terms in Table 48.B (apogee) = 3240.679

Hence, the time of the apogee is
JDE = 2447 442.8191 - 0.4654 = 2447 442.3537

which corresponds to 1988 October 7, at 20129% TD. The corresponding
value of the Moon's equatorial horizontal parallax is 3240".679, or
0°54'00".679.

The exact values are 20h30® TD and 0°54'00".671.
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TABLE 48.a
Periodic terms for the time, in days
For the perigee
A;?“;’f:et Coefficient A;g”:‘f:et Coefficient
2D -1.6769 2D - 2M ~-0.0027
4D +0.4589 4D - 2M +0.0024
6D —-0.1856 6D - 2M -0.0021
8p +0.0883 22D -0.0021
2D - M ~0.0773 + 0.00019 7 18D - M -0.0021
M +0.0502 - 0.00013 7 6D + M +0.0019
10D ~0.0460 iip -0.0018
4D - M +0.0422 - 0.00011 T 8D+ M -0.0014
6D - M -0.0256 4p -~ 2F -0.0014
12p +0.0253 6D + 2F -0.0014
D +0.0237 3D+ M +0.0014
8D - M +0.0162 5D+ M -0.0014
14D -0.0145 13p +0.0013
2F +0.0129 200 - M +0.0013
3p -0.0112 3D+ 2M +0,0011
10D - M -0.0104 4D+ 2F - 2M -0.0011
16D +0.0086 D+2M ~0.0010
i2p ~ M +0.0069_ 22D - M -0.0009
5D +0.0066 4F -0.0008
2D + 2F -0.0053 6D ~ 2F +0.0008
18D -0.0052 2D - 2F + M +0.0008
14D - M ~-0.0046 2M +0.0007
7D -0.0041 2F - M +0.0007
2D+ M +0.0040 2D + 4F +0.0007
20D +0.0032 2F - 2M -0.0006
D+ M -0.0032 2D - 2F +2M ~0.0006
16D - M +0.0031 24D +0.0006
4D + M -0.0029 4D - 4F +0.0005
9p +0.0027 2D + 2M +0.0005
4D + 2F +0.0027 D-M -0.0004
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TABLE 48.A (cont.)
For the apogee

]:rfgus";i"et Coefficient irfgus’“i“':;t Coefficient
2D +0.4392 8D - M +0.0011
4D +0.0684 4D - 2M +0.0010
M +0.0456 - 0.00011 T 10D +0.0009
2D - M +0.0426 - 0.00011 T 3D+ M +0.0007
2F +0.0212 2M +0.0006
D -0.0189 2D+ M +0.0005
6D +0.0144 2D + 2M +0.0005
4D - M +0.0113 6D+ 2F +0.0004
2D+ 2F +0.0047 6D - 2M +0.0004
D+M +0.0036 10p - M +0.0004
8D +0.0035 5p -0.0004
6D - M +0.0034 4D - 2F -0.0004
2D 2F ~0.0034 2F + +0.0003
2D 2M +0.0022 12p +0.0003
3p ~0.0017 2D+ 2F- M +0,0003
4D + 2F +0.0013 D-M -0.0003
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TABLE 48.B

Terms for the parallax, in arcseconds

36297215
+63.224
-6.990
42.834
-0.0071 T
+1.927
-1.263
-0.702
+0.696
-0.0017 T
-0.690
-0.629
+0.0016 T
-0.392
+0.297
+0.260
+0.201
-0.161
+0.157
-0.138
-0.127
+0.104
+0.104
-0.079
+0.068

32457251
-9.147
-0.841
+0.697
-0.656
+0.0016 T
+0.355
+0.159
+0.127
+0.065

For

X cos 2D

}

}
|

X

}

4D
2D - M

6D
D
8D

M
2F
4D - M

2D - 2F
10D
6D - M
3p
2D+ M
D+ M
12D
8D - M
2D + 2F
2D - 2M
5D
14D

For

cos 2D

2F

4D

2D - M
D+ M

4D - M

the perigee

the apogee

n

+0.
+0.
-0.
-0.
+0.
-0.
-0.
-0.
+0.
-0.
+0.
+0.
-0.
+0.
-0.
~-0.
+0.
+0.
+0.
-0.
+0.
+0.
+0.
+0.
-0.

067
054
038
038
037
037
035
030
029
025
023
023
023
022
021
020
019
017
014
014
013
012
011
010
010

"

+0.
+0.
+0.
-0.
+0.
+0.
-0.
+0.
+0.

052
043
031
023
022
019
016
014
010

x cos 10D
4D
12p
4D
7D
4D
16D
3p

6D
2M
14D
2D
6D
2D
9p
18D
6D
2F
16D
4D
8D
11D
5D
20D

x cos 6D
2D
2D
2D
2D
2D
2M
6D
8D

<3

2M

2F

<3

2M
2M
2F

2F
2F
2M
2M
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Using the method described in this Chapter, 600 perigee and 600
apogee passages of the Moon were calculated, namely from June 1977
to August 2022. The results were compared with accurate values ob-
tained with the ELP-2000/82 theory. The largest errors are

for the time : 31 minutes for the perigee,
3 minutes for the apogee;

for the parallax : 0'".124 for the perigee,
0".051 for the apogee.

The latter errors correspond to distance errors of 12 and 6 ki-
lometers, respectively. The distribution of the errors of the 600
calculated times is as follows :

Number of errors

less than Perigee Apogee
1 minute 151 478
2 minutes 264 589
3 minutes 385 599
4 minutes 460

5 minutes 492

10 minutes 572

The mean time interval between two consecutive passages of the
Moon through perigee is 27.55455 days, or 27 days 13 hours 19 minu-
tes; this is the length of the anomalistic period of the Moon. How-
ever, mainly by reason of the perturbing action of the Sun, the ac-
tual time interval between consecutive perigees varies greatly, bet-
ween the extremes 24 days 16 hours and 28 days 13 hours. Examples:

perigee on 1997 December 9 at 1619
perigee on 1998 January 3 at 815

} diff. 24 days 16 hours

s h
perigee on 1990 December 2 at 108§ } diff.

perigee on 1990 December 30 at 2398 = 28 days 13 hours

The time interval between two consecutive apogees, however, varies
between narrower limits, namely between 26.98 and 27.90 days (26 days
234 hours and 27 days 21% hours).
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Extreme perigee and apogee distances of the Moon

Between the years 1500 and 2500, fourteen times the Moon approa-
ches the Earth to less than 356 425 kilometers, and the same number
of times the distance grows to larger than 406710 km. These cases
are mentioned in Table 48.C. The dates are UT dates.

For the calculation, use has been made of Chapront's lunar theory
ELP-2000/82, except that we neglected all periodic terms with a co-
efficient less than 0.0005 km (50 centimeters).

It appears that, during the time interval of ten centuries consi-
dered here, the extreme distances between the centers of Earth and
Moon are

356371 km on 2257 January 1
406 720 km on 2266 January 7

The smallest perigee distance of the 20th century was that of
1912 January 4, as was already found earlier by Roger W. Sinnott,
Associate Editor of Sky and Telescope [1].

Further, we see that these extreme perigees and apogees all occur
during the winter months of the northern hemisphere, the period of
the year when the Earth is closest to the Sun. It is evident that
the variable Earth-Sun distance somewhat affects the Earth-Moon
distance.

TABLE 48.C : Extreme perigees and apogees, A.D. 1500 to 2500
perigee < 356 425 km apogee > 406710 km
1548 Dec 15 356 407 km 1921 Jan 9 406 710 km
1566 Dec 26 356 399 1984 Mar 2 406712
1771 Jan 30 356 422 2107 Jan 23 406716
1893 Dec 23 356 396 2125 Feb 3 406 720
1912 Jan 4 356 375 2143 Feb 14 406713
1930 Jan 15 356 397 2247 Dec 27 406715
2052 Dec 6 356 421 2266 Jan 7 406 720
2116 Jan 29 35€ 403 2284 Jan 18 406714
2134 Feb 9 356416 2388 Nov 29 406 715
2238 Dec 22 356 406 2406 Dec 11 406718
2257 Jan 1 356371 2424 Dec 21 406712
2275 Jan 12 356 378 2452 Jan 21 406 710
2461 Jan 26 356 408 2470 Feb 1 406 714
2479 Feb 7 356 404 2488 Feb 12 406711
References

1. Roger W. Sinnott, letter of 1981 March 4 to Jean Meeus.

2. J. Meeus, ‘'Extreme Perigees and Apogees of the Moon', Sky and
Telescope, Vol. 62, pages 110-111 (August 1981).



Chapter 49

Passages of the Moon through the Nodes

When the center of the Moon passes through the ascending or through
the descending node of its orbit, its geocentric latitude is zero.
Approximate times of the passages through the nodes can be obtained
as follows. The results will be expressed as a Julian Ephemeris Day,
JDE, hence in Dynamical Time.

For a passage through the ascending node, take k = an integer.
For a passage at the descending node, take for k an integer increa-
sed by 0.5. Important : any other value for k will give meaning-
less results!

Successive values of k will provide successive passages of the
Moon through the nodes, the value k = zero corresponding to the pas-
sage at the ascending node of 2000 January 21. Negative values of k
yield passages before this date.

For instance, k = +223.0 and ~147.0 correspond to an ascending
node, +223.5 and -146.5 to a descending node, while +144.76 is not
a valid value for k.

An approximate value of k is given by
k = (year - 2000.05) x 13.4223 (49.1)
where 'year' may be taken with decimals. Then calculate

k

T = 1352.23

and the following angles in degrees:

D = 183.6380 + 331.73735691 k + 0.001 5057 T2
+ 0.00000209 73 - 0.000000010 T4
M = 17.4006 + 26.82037250 k + 0.0000999 72 + 0.000 00006 T3

333



334 ASTRONOMICAL ALGORITHMS

M' = 38.3776 + 355.527 47322 k + 0.0123577 72
+ 0.000014628 73 - 0.000 000 069 T*
= 123,9767 -~ 1.44098949 k + 0.0020625 72

+ 0.000002 14 73 - 0.000 000 016 T*
299.75 + 132.857T -~ 0.009173 72
Q + 272.75 - 2.3 7

The time of the passage through the node is then given by the
following expression, where the terms involving M (the Sun's mean
anomaly) should be multiplied by the quantity E given by formula
(45.6). These terms are indicated by an asterisk.

JDE = 2451565.1619 + 27.212220817 k

+ 0.0002572 12

+ 0.000000021 73
.000 000 000 088 T4
L4721 sin M'
.1649 sin 2D
.0868 sin (2D - M')
.0084 sin (2D + M')
.0083 sin (2D - M)
.0039 sin{(2p - M - M'")
.0034 sin 2M'
.0031 sin (2D ~ 2M')
.0030 sin (2D + M)
.0028 sin (M - M')
.0026 sin M
L0025 sin 4D
.0024 sin D
.0022 sin (M + M*)
.0017 sin @
.0014 sin (4D - M')
.0005 sin (2D + M - M")
.0004 sin (2D - M + M")
.0003 sin (2D -~ 2M)
.0003 sin (4D - M)
.0003 sin v
.0003 sin P

%
{

+

. T S S S S S|

i

* % % %
OO0 0000000000000 000000 oo

+ 4+ +
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Example 49.a Calculate the instant of the passage of the Moon

through the ascending node in May 1987.

Since mid-May corresponds to 0.37 year since the beginning of the
year, we put year = 1987.37 in formula (49.1), which gives the ap-
proximate value -170.19 for k. For a passage through the ascending

node, k should be an integer, so we take k = -170. Then we find

T = -0.126 655

D = -56211°.71265 = 308°.28735

M = =-4542°,06272 = 137°.93728

M’ = —-60401°.29265 = 78°.70735

Q = 368°.9449 = 8°.9449

vV = 282°.92

p = 641°.99 = 281°99

E 1.000 319

The final result is JDE = 2446 938.76803, which corresponds to
1987 May 23.26803 = 1987 May 23, at 6h26m0 TD.

The correct value is May 23, at 6R25m.6 TD.

The table below gives an idea of the accuracy of the results ob-
tained by means of the algorithm given in this Chapter, as compared
with the times obtained by an accurate calculation.

Years Number Greatest Number Number
T Node of error in | of errors| of errors
(A.D.) instants | seconds | < 60 sec.| > 120 sec.
1980 to 2020 | ascending 551 142 487 3
1980 to 2020 | descending 551 132 469 2
0 to 40 ascending 551 144 444 5
0 to 40 descending 551 135 478 2







Chapter 50

Maximum Declinations of the Moon

The plane of the orbit of the Moon forms with the plane of the ec-
liptic an angle of 5°. Therefore, in the sky the Moon is moving
approximately along the ecliptic, and during each revolution (27
days) it reaches its greatest northern declination (in Taurus, in
Gemini, or in northern Orion), and two weeks later its greatest
southern declination (in Sagittarius or in Ophiuchus).

Since the lunar orbit forms with the ecliptic an angle of 5°,
and the ecliptic an angle of 23° with the celestial equator, the ex-
treme declinations of the Moon are between 18° and 28° (North or
South), approximately. When, as in 1987, the ascending node of the
lunar orbit is in the vicinity of the vernal equinox (see page 314),
the Moon reaches high northern and southern declinations, approxi-
mately +28% and -28% degrees. This situation is repeated at inter-
vals of 18.6 years, the revolution period of the lunar nodes.

In this Chapter a method is given for the calculation of appro-
ximate times of the maximum declinations of the Moon, and the values
of these maximum declinations. These data are geocentric and they
refer to the center of the Moon's disk.

Let k be an integer, negative before the beginning of the year
2000. Successive values of k will give successive maximum northern
or southern declinations of the Moon. The value k =0 corresponds
to January 2000. Important : a non-integer value of k will give
meaningless results!

An approximate value of k is given by
k = (year - 2000.03) x 13.3686 (50.1)
where the 'year' can be taken with decimals. Then calculate

k

T = 1336.86
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TABLE 50.A
Periodic terms (days) for the time of the Moon's maximum declination

Coefficient for Coefficient for
decli- decli- decli- decli-
nation nation nation nation

north south north south

d d d d
+0.8975| -0.8975 | cos F +0.0030 | +0.0030 | sin (2D + M")
-0.4726 | -0.4726 | sin M' -0.0029 [ +0.0029 ! cos (M’ + 2F)
-0.1030§| -0.1030 | sin 2F -0.0029 | -0.0029 | sin (2D-M) *
-0.0976 [ -0.0976 | sin (2D - M") -0.0027 | -0.0027 | sin (M* + F)
-0.0462| +0.0541 | cos (M' - F) +0.0024 { +0.0024 | sin (M - M*) «*
-0.0461 | 40.0516 | cos (M' + F) -0.0021 1 -0.0021 ] sin (M' ~ 3F)
~0.0438 | ~0.0438 | sin 2D +0.0019 {-0.0019 | sin (2M' + F)
+0.0162 | +0.0112 | sin M * +0.0018 | -0.0006 | cos (2D-2M"'-F)
-0.0157 | 40.0157 { cos 3F +0.0018 } -0.0018 | sin 3F
+0.0145| 40.0023 | sin (M' + 2F) +0.0017 } -0.0017 | cos (M’ +3F)
+0.0136{ -0.0136 | cos (2D - F) +0.0017 | +0.0017 | cos 2M’

~0.0095 | +0.0110 { cos (2D -M' ~ F) ~0.0014 } 40.0014 | cos (2D - M")
-0.0091 | +0.0091 | cos (2D - M' +F) +0.0013 1 -0.0013 | cos(2D+M’ +F)

~0,0089 | +0.0089 | cos (2D + F) +0.0013 | -0.0013 | cos M’
+0.0075| +0.0075 | sin 2M’ +0.0012 | +0.0012 | sin (3M' +F)
-0.0068 | ~0.0030 | sin (M’ - 2F) +0.0011 | +0.0011 | sin(2D~M' +F)
+0.0061 { -0.0061 | cos (2M' - F) -0.0011 | +40.0011 | cos (2D - 2M")
-0.0047 | -0.0047 | sin (M' + 3F) +0.0010 | +0.0010 | cos (D + F)
~0.0043 | ~0.0043 | sin(2D~-M~M') *| +0.0010 | +0.0010 | sin (M +M') *
~0,0040 | +0.0040 } cos (M* - 2F) -0.0009 {-0.0009 | sin (2D — 2F)
~0.0037 | -0.0037 | sin (2D - 2M") +0.0007 |-0.0007 | cos (2M' + F)
+0.0031 } -0.0031 |sin F -0.0007 | -0.0007 | cos {(3M'+ F)

and the following angles, in degrees; the quantities between square
brackets should be used for southern declinations.

D = 152.2029 + 333.0705546 k - 0.0004025 72 + 0.000 00011 73
[(345.6676]

M = 14.8591 + 26.9281592 k - 0.000 0544 T2 — 0.000 000 10 73
[1.3951]

M'= 4.688] + 356.956 2795 k + 0.0103126 77 + 0.000012 51 73
[186.2100]

F = 325.8867 + 1.446 7806 ¥ — 0.0020708 T2 - 0.000 00215 73
[145.1633]
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TABLE 50.B

Periodic terms (deg.) for the value of the Moon's maximum declination

Coefficient for Coefficient for

decli- decli- decli- decli-

nation nation nation nation

north south north south

[+ [+ o) [+

+5.1093 | -5.1093 | sin F +0.0038 | ~0.0038 | cos (2M’ - F)
+0.2658 | +0.2658 | cos 2F ~0.0034 | +0.0034 | cos (M’ - 2F)
+0.1448 | -0.1448 | sin (2D - F) ~0.0029 | -0.0029 | sin 2M'
-0.0322 | +0.0322 | sin 3F +0.0029 | +0.0029 | sin (3M' + F)
40.0133 | +0.0133 | cos (2D - 2F) ~0.0028 | +0.0028 | cos (2D +M-F) *
+0.0125 | +0.0125 | cos 2D ~0.0028 | -0.0028 | cos (M' - F)
-0.0124 {-0.0015 | sin (M’ ~ F) -0.0023 } +0.0023 | cos 3F
-0.0101 | +0.0101 | sin (M' + 2F) ~0.0021 { +0.0021 | sin (2D + F)
+0,0097 { -0.0097 | cos F +0.0019 | +0.0019 | cos (M’ + 3F)
-0.0087 {+0.0087 | sin{(2D+ M -F) * | +0.0018 | +0.0018 { cos (D + F)
+0.0074 | 40.0074 | sin (M' + 3F) +0.0017 { -0.0017 | sin (2M' - F)
+0.0067 | 40.0067 | sin (D + F) +0.0015 | +0.0015 | cos (3M* + F)
+0.0063 | -0.0063 | sin (M' - 2F) +0.0014 | +0.0014 | cos (2D+2M' +F)
+0.0060 | -0.0060 | sin(2D-M-F) * | ~0.0012 | +0.0012 | sin (2D-24'-F)
~0.0057 { 40.0057 | sin{(2D-¥M"' - F) -0.0012 | -0.0012 | cos 2M"'
-0.0056 | -0.0056 | cos (M' +F) ~0.0010 | +0.0010 { cos M’

+0.0052 | -0.0052 | cos (M' + 2F) -0.0010} ~0.0010 | sin 2F
+0.0041 {-0.0041 | cos (2M’ +F) 4+0.0006 | +0.0037 | sin (#' + F)
-0.0040 | -0.0040 | cos (M' - 3F)

The time of greatest northern or southern declination is then

JDE = 2451562.5897 + 27.321582241 k¢ + 0.000 100 695 12
[2451 548.9289] - 0.000 000 141 73
+ periodic terms of Table S50.A

In Table 50.A, the terms involving M, the Sun's mean anomaly,
should be multiplied by the quantity E given by formula (45.6).
These terms are indicated by an asterisk.

The value of the greatest declination, in degrees, is
§ = 23.6961 - 0.013004T + periodic terms of Table 50.B.

In Table 50.B, again, the terms indicated by an asterisk should
be multiplied by E. It should be noted that the absolute value of
the maximum declination is obtained; in the case of a greatest sou-
thern declination, this declination thus is not affected by the
minus sign.
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Example 50.a — Greatest northern declination of the Moon in De-
cember 1988,

Inserting the value year = 1988.95 in formula (50.1), we obtain
k = -148.12, so we take k = -148. We then find

T = -0.110707 M' = -52824°.8411 = 95°.1589
D = -49142°,2392 = 177°.7608 F = 111°.7631
M = -3970°.5085 = 349°.4915 E = 1.000278

We obtain JDE = 2447 518.3347, which corresponds to 1988 Decem-
ber 22.8347 = 1988 December 22, at 20R02® TD. The correct value is
December 22, at 20B0i® TD.

For the value of that maximum northern declination, we obtain
28°.1562 = +28°09'22". The correct value is +28°09'13".

Example 50.b — If we calculate the maximum southern declination
for k = +659, we obtain JDE = 2469 553.0834, which
corresponds to 2049 April 21, at 14h TD, and
§ = 22°,1384, so the greatest southern declination
is -22°08"'.

Example 50.c — To find the Moon's greatest northern declination

of mid-March of the year -4, we have 'year' =
0.20 year after the beginning of the year -4; so 'year' = -4 + 0.20
= ~3.80, and not =-4.20!

This gives for k the approximate value -26788.40, whence k =
-26788 (an integer!).

We then obtain JDE = 1719672.1337, which corresponds to March 16
at 150 TD of the year -4;

greatest northern declination = 28°.9739 = +28°58'.

Using the method described in this Chapter, 600 maximum northern
and 600 maximum southern declinations were calculated, namely from
1977 August to 2022 June. The maximum errors are 10 minutes for the
time, and 26" for the value of the maximum declination. For 697 of
the cases, the calculated time is less than 3 minutes in error, and
in 747 of the cases the calculated declination is less than 10" in
error.

The coefficients of the periodic terms in Tables 50.A and 50.B
have been calculated using for the obliquity of the ecliptic its
value for the epoch 2000.0. As a consequence, the error resulting
from using these terms will increase with time, but the maximum
possible error will not exceed half an hour between the years -1000
and +5000.



Chapter 51

Ephemeris for Physical Observations
of the Moon

Optical librations

The mean period of rotation of the Moon is equal to the mean si-
dereal period of revolution around the Earth, and the mean plane of
the lunar equator intersects the ecliptic at a constant inclination,
I, in the line of nodes of the lunar orbit, with the descending node
of the equator at the ascending node of the orbit.

On the average, therefore, the same hemisphere of the Moon is al-
ways turned towards the Earth. However, because of the apparent os-
cillations known as optical librations, which are due to variations
in the geometric position of the Earth relative to the lunar surface
during the course of the orbital motion of *+%~ M~nw ~b-oes €0
cent of the surface can be observed altogether.

The mean center of the Moon's apparent disk is the origin of the
system of selenographic coordinates on the surface of the Moon.
Selenographic longitudes are measured from the lunar meridian that
passes through the mean center of the apparent disk, positive in the
direction towards Mare Crisium, that is, towards the west on the
geocentric celestial sphere. Selenographic latitudes are measured
from the lunar equator, positive towards the north, that is, they
are positive in the hemisphere containing Mare Serenitatis.

The displacement, at any time, of the mean center of the disk
from the apparent center, represents the amount of libration, and is
measured by the selenographic coordinates of the apparent center of
the disk at that time.

The selenographic longitude and latitude of the Earth, as given
in the almanacs, are the geocentric selenographic coordinates of the
apparent central point of the disk; at this point on the surface of
the Moon, the Earth is in the zenith. When the libration in longi-
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tude, that is the selenographic longitude of the Earth, is positive,
the mean central point of the disk is displaced eastwards on the ce-
lestial sphere, exposing to view a region on the west limb., When the
libration in latitude, or selenographic latitude of the Earth, is
positive, the mean central point of the disk is displaced towards
the south, and a region on the north limb is exposed to view.

The optical librations in longitude (1') and in latitude (b') can
be obtained as follows. Let

I = the inclination of the mean lunar equator to the ecliptic, na-

mely 1°32'32".7 = 1°.54242. This is the value adopted by the
International Astronomical Union;

A = apparent geocentric longitude of the Moon;
= apparent geocentric latitude of the Moon;
AY = nutation in longitude (see Chapter 21);
F = argument of latitude of the Moon, obtained from (45.5);

= mean longitude of the ascending node of the lunar orbit, ob-
tained from formula (45.7).

Then we have
W= A~ Ay -Q

sin W cos B cos I - sinf sinI

tan A =

cos W cos 8 (51.1)
1'"=a-r
sin b' = -sin W cos 8 sin T ~ sin 8 cos I

In the calculation of A, the effect of the nutation is suppo-
sed be included, so > - Ay represents in fact the 'apparent longi-
tude of the Moon without the effect of the nutation'.

Physical librations

There is an actual rotational motion of the Moon about its mean
rotation; this is called the physical libration. The physical 1i-
bration is much smaller than the optical libration, and can never be
larger than 0.04 degree in both longitude and latitude.

The physical librations in longitude (1”) and in latitude (b")
can be calculated as follows, and the total librations are the sums
of the optical and physical librations :

1=1"+1", b =b'+ b".

Calculate the quantities p, 0 and T (in degrees) by means of the
following expressions due to D.H. Eckhardt [1], where the angles D,
M and M’ are obtained by means of expressions (45.2) to (45.4);
find E by means of (45.6), and the angles K; and K, (in degrees)



51. Physical Ephemeris of the Moon 343

from
Ky = 119.75 + 131.849 T
Ky = 72.56 + 20.186 T

where, as elsewhere in this book, T is the time measured in Julian
centuries of 36525 days from the Epoch J2000.0 = JDE 2451 545.0.

p=-0.02752 cos M’ T = +0.02520 E sin M
-0.02245 sin F +0.00473 sin (2M' - 2F)
+0.00684 cos (M’ ~ 2F) -0.00467 sin M’
-0.00293 cos 2F +0.00396 sin K,
-0.00085 cos (2F - 2D) +0.00276 sin (2M' - 2D)
-0.00054 cos (M' ~ 2D) +0.00196 sin Q
~0.00020 sin (M' + F) -0.00183 cos (M' - F)
-0.00020 cos (M' + 2F) +0.00115 sin (M' - 2D)
-0.00020 cos {(M' ~ F) -0.00096 sin (M' - D)
4+0.00014 cos (M' +2F - 2D) +0.00046 sin (2F - 2D)

-0.00039 sin(M' - F)
-0.00032 sin (M' - M - D)

o = -0.02816 sin M' +0.00027 sin (24' -~ M - 2D)
+0.02244 cos F +0.00023 sin K,
~-0.00682 sin (M' ~ 2F) -0.00014 sin 2D
-0.00279 sin 2F +0.00014 cos {(2M' ~ 2F)
-0.00083 sin (2F -~ 2D) -0.00012 sin (M' - 2F)
+0.00069 sin (M' ~ 2D) -0.00012 sin 2M'
4+0.00040 cos (M' +F) +0.00011 sin (2M' - 2M - 2D)

-0.00025 sin 2M'

-0.00023 sin (M' +2F)
+0.00020 cos (M’ - F)
+0.00019 sin (M' ~ F)
+0.00013 sin (M’ +2F - 2D)
-0.00010 cos (M’ -~ 3F)

Then we have

1"
"

-1 + (p cos A+ 0 sin &) tan b’

: (51.2)
g cos A -~ p sin A

Position Angle of Axis

The position angle of the Moon's axis of rotation, P, is defined
as for the planets (see Chapters 41 and 42). It can be calculated
as follows; the effect of the physical libration is taken into ac-
count,
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I, @, Ay, p, 0 and b have the same meaning as before, and let a
be the apparent geocentric right ascension of the Moon, and € the
true obliquity of the ecliptic.

v

X
Y

tan

sin

The angle ®w can be obtained in the correct quadrant by using the
'second' arctangent function:
not available, divide X by Y, take the usual arctangent of the re-

ASTRONOMICAL ALGORITHMS

Q+ AY +

sin (1 +p)
sin (I +p)

w x/y

/X2 +¥? cos (a-w)

Then
ag
sin I
sin v
cos V cos € — cos {(I+p) sin ¢

P

cos b

sult, then add 180° if Y < O.

The angle P is to be taken in the first or in the fourth qua-

drant.

w = ATN2 (X, Y).

Example 51.a

The Moon on 1992 April

For this instant we have (see Example

ER-AV]

>
& e

= 113°.842309

]

97°.643514
5°.150 839
219°.889726
+0°.004610
1.000 194

Then we obtain :

Q=

w
A
i’

b'

274°.400 655
218°.762 004
218°.683 937
-1°.206
+4°.194
109°.57
71°.00
-0.01042
-0.01574
+0.02673

(-

A

NWE RN g b

oo

12, at O® TD.
45.a)

133°.167 269
-3°.229127
133°.162 659
23°.440 636
134°.688 473

-0°.025
+0°.006
~-1°.23
+4°,20

= 273°.820 506

1°.53200
-0.026 676
-0.396 022
183°.8536
15°.08

1f this function is
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Topocentric librations

For precise reductions of observations, the geocentric values of
the librations and position angle of the axis should be reduced to
the values at the place of the observer on the surface of the Earth.
For the librations, the differences may reach 1°, and have important
effects on the limb-contour.

The topocentric librations in longitude and latitude, and the
topocentric position angle of the axis, may be calculated either by
direct calculation or by differential corrections of the geocentric
values.

a. Direct calculation. — The formulae given before are used, but the
geocentric coordinates A, B, a of the Moon are replaced by the
topocentric ones. For this purpose, the topocentric right ascension
and declination of the Moon are obtained by means of formulae (39.2)
and (39.3); then they are transformed to the ecliptical coordinates
X and B by the usual conversion formulae (12.1) and (12.2) to ob-
tain the topocentric longitude and latitude.

b. Differential corrections. — Let ¢ be the observer's latitude, §
the geocentric declination of the Moon, H the local hour angle of
the Moon (calculated from the local sidereal time and the geocentric
right ascension), and T the geocentric horizontal parallax of the
Moon. Then calculate

cos ¢ sin H

tan Q

cos § sin¢ - sin § cos ¢ cos H
cos z = sin § sin ¢ + cos § cos ¢ cos H
7' = 7 (sinz + 0.0084 sin 2z)

Then the corrections to the geocentric librations (I, b) and to
the position angle (P) are

- ’ -
AL = ' sin (Q - P)

cos b
Ab = +1' cos (0-P)
AP = + Al sin(b+ Ab) — 7' sin Q tan §

These formulae were given in Reference [2].
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The selenographic position of the Sun

The selenographic coordinates of the Sun determine the regions of
the lunar surface that are illuminated.

The selenographic longitude I, and latitude b, of the subsolar
point on the lunar surface — the point where the Sun is at the ze-
nith — are obtained by replacing, in the formulae (51.1) for the se-
lenographic coordinates of the Earth, the geocentric ecliptical
coordinates A, B of the Moon by the heliocentric ecliptical coor-
dinates Ay, By of the Moon. With sufficient accuracy we have

A

g Ao + 180° + = X 57°,296 cos B sin (A, - A)

1]

BH=%B

where A, is the apparent geocentric longitude of the Sun. The
fraction A/R is the ratio of the distance Earth-Moon to the dis-
tance Earth-Sun; hence, A and R should be expressed in the same
units, for instance kilometers. If, instead, R is expressed in as-
tronomical units, and T is the equatorial horizontal parallax of
the Moon expressed in seconds of arc ('), the fraction A /R is
equal to

8.794
TR

Hence, to find 1, and b,, first calculate Ay and fy. Then use
expressions (51.1), replacing A by Ay, and § by By; this will
give 1', and b‘',. The quantities p, 0 and 71 are found by the un-
changed expressions, and finally 1", and b", by (51.2), using b/,
instead of b’'. Then

I, = 1" + 1" and b, = b’y + b",

Subtracting 1, from 90° or 450° gives the selenographic colongi-
tude of the Sun (c,), which is tabulated in some ephemerides.

The quantities 1, (or ¢,) and b, determine the exact position of
the terminator on the surface of the Moon. The subsolar point at
l,, b, is the pole of the great circle on the lunar surface that
bounds the illuminated hemisphere. The morning terminator, where the
Sun is rising on the Moon, is at selenographic longitude 1, - 90°,
or 360° -c,. The evening terminator is at longitude 1, + 90°, or
180° - ¢,. When ¢, = 0°, the Sun is rising at selenographic longi-
tude 0°; this occurs near First Quarter. At Full Moon, Last Quarter,
and New Moon, respectively, ¢, is approximately 90°, 180°, and 270°,
and the morning terminator is approximately at selenographic longi-
tudes 270°, 180°, and 90°.

It should be noted that, while 1, is decreasing with time, the
colongitude ¢, is increasing. Their mean daily motion is equal to
that of the Moon's mean elongation D, namely 12.190 749 degrees.
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At a point on the lunar surface at selenographic longitude n and
latitude 6, sunrise occurs approximately when c, = 360° - n, noon
when ¢, = 90°- 1, and sunset when ¢, = 180° - 5. The exact alti-
tude h of the Sun above the lunar horizon at any time may be calcu-
lated from

sin h = sin b, sin 6 + cos b, cos 8 sin(c, + 1)

Example 51.b — The Moon on 1992 April 12, at Ob TD.

For this instant, we have (from accurate calculations using the
VSOP87 and ELP-2000/82 theories):

Ao 22°.33978
A 368406 kilometers
R 1.002497 69 AU = 149971500 km

The other relevant quantities have been found in Example 51.a.
We then find

Ag = 202°.208 438 1" = -0°.026
By = -0°.007932 b = =0°015
w = 287°.803173 1, = 67°.89
A = 287°.809 284 b, = +1°.46
1= 67°.920 c, = 22°.11
b= +1°476
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1. D.H. Eckhardt, 'Theory of the Libration of the Moon', Moon and
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Chapter 52

Eclipses

Without too much calculation, it is possible to obtain with good
accuracy the principal characteristics of an eclipse of the Sun or
the Moon. For a solar eclipse, the situation is complicated by the
fact that the phases of the event are different for different obser-
vers at the Earth's surface, while in the case of a lunar eclipse
all observers see the same phase at the same instant.

For this reason, we will not consider here the calculation of the
local circumstances of a solar eclipse. The interested reader may
calculate these circumstances from the Besselian Elements published
yearly in the Astronomical Ephemeris (renamed Astronomical Almanac
in 1981). Besselian elements for all solar eclipses for the years
~-2003 to +2526 can be found in the Canon by Mucke and Meeus [1].
For modern times, accurate Besselian elements have been published
by Meeus [2]. Besides the elements, these two works give the formu-
lae needed for their use, together with numerical examples.

Espenak published a Canon [3] giving data about the paths of to-
tal and annular solar eclipses from 1986 to 2035, with beautiful
world maps for all eclipses in that period. That work does not con-
tain Besselian elements, however, so it does not provide the possi-
bility to calculate extra data, such as local circumstances for
places outside the path of total or annular phase.

Let us also mention the work by Stephenson and Houlden [4], which
contains data and charts for the total and annular eclipses visible
in East Asia from 1500 B.C. to A.D. 1900.

General data
First, calculate the instant (JDE) of the mean New or Full Moon,
by means of formulae (47.1) to (47.3). Remember that k must be an

integer for a New Moon (solar eclipse), and an integer increased by
0.5 for a Full Moon (lunar eclipse).
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Then, calculate the values of the angles M, M', F and Q for
that instant, by means of expressions (47.4) to (47.7), and the va-
lue of E by formula (45.6).

The value of F will give a first information about the occurrence
of a solar or lunar eclipse. If F differs from the nearest multiple
of 180° by less than 13°.9, then there is certainly an eclipse; if
the difference is larger than 21°0, there is no eclipse; between
these two values, the eclipse is uncertain at this stage and the
case must be examined further. Use can be made of the following
rule: there is no eclipse if |sin F| > 0.36.

Note that, after one lunation, F increases by 30°.6705.

If F is near 0° or 360°, the eclipse occurs near the Moon's as-
cending node. If F is near 180°, the eclipse takes places near the
descending node of the Moon's orbit.

Calculate

Fy = F - 0°.02665 sin Q
Ay = 299°.77 + 0°.107408 k - 0.009173 72

Then, to obtain the time of maximum eclipse (for the Earth gene-
rally in the case of a solar eclipse), the following corrections (in
days) should be added to the time of mean conjunction given by ex-
pression (47.1).

-0.4075 x sin M' } for lunar eclipses, change the
+0.1721 x E M constants to =-0.4065 and +0.1727
+0.0161 2M’

~0.0097 2F,

+0.0073 x E M'-M

-0.0050 x E M'+ M

-0.0023 M- 2R,

+0.0021 % E 2M

+0.0012 M+ 2F) (52.1)
+0.0006 x E 2M' + M

-0.0004 M’

-0.0003 x E M+ 2F,

+0.0003 A,

-0.0002 x E M- 2F,

-0.0002 x E 2M' - M

-0.0002 Q

This algorithm should not be used, of course, if high accuracy
is needed. For the 221 solar eclipses of the years A.D. 1951 to
2050, the method gives a mean error of 0.36 minute, and a greatest
error of 1.1 minute in the times of maximum eclipse.
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Then calculate

P =+0.2070 x E x sin M 0 = +5.2207
+0.0024 x E sin 2M ~0.0048 XE X cos M
-0.0392 sin M’ +0.0020 x E cos 2M
+0.0116 sin 2M’' ~0.3299 cos M’
-0.0073 x E sin (M' +M) -0.0060 xE cos (M’ + M)
+0.0067 x E sin (M' - M) +0.0041 X E cos (M' - M)
+0.0118 sin 2F;
w = lcos Fll
Y= (P cos Fy + @ sin F{) x (1 - 0.0048 W)
u = 0.0059
+0.0046 E cos M
-0.0182 cos M'

+0.0004 cos 2M'
- 0.0005 cos (M+M")

Solar eclipses

In the case of a solar eclipse, Y represents the least distance
from the axis of the Moon's shadow to the center of the Earth, in
units of the equatorial radius of the Earth. The quantity Yy is po-
sitive or negative, depending upon the axis of the shadow passing
north or south of the Earth's center. When Y is between +0.9972
and -0.9972, the solar eclipse is central: there exists a line of
central eclipse on the Earth's surface.

The quantity u denotes the radius of the Moon's umbral cone in
the fundamental plane, again in units of the Earth's equatorial ra-
dius. (The fundamental plane is the plane through the center of the
Earth and perpendicular to the axis of the Moon's shadow). The
radius of the penumbral cone in the fundamental plane is

u + 0.5461

If |y| is between 0.9972 and 1.5433 + u, the eclipse is not
central. In most cases, it is then a partial eclipse. However, when
'Y’ is between 0.9972 and 1.0260, a part of the umbral cone may
touch the surface of the Earth (within the polar regions), while the
axis of the cone does not touch the Earth. These non-central total
or annular eclipses occur when 0.9972 < |y| < 0.9972 + |u}.
Between the years 1950 and 2100, there are seven eclipses of this
type :
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1950 March 18 annular, not central
1957 April 30 annular, not central
1957 October 23 total, not central
1967 November 2 total, not central

2014 April 29 annular, not central
2043 April 9 Total, not central
2043 October 3 annular, not central

If |y] > 1.5433 +u, no eclipse is visible from the Earth's sur-
face.

In the case of a central eclipse, the type of the eclipse can be
determined by the following rules:

if u < 0, the eclipse is total;
if u > +0.0047, the eclipse is annular;

if u is between 0 and +0.0047, the eclipse is either annular or
annular-total.

In this latter case, the ambiguity is removed as follows. Calcu-
late

w = 0.00464 /1-v2 >0

Then, if u < w, the eclipse is annular-total; otherwise it is
an annular one.

In the case of a partial solar eclipse, the greatest magnitude
is attained at the point of the surface of the Earth which comes
closest to the axis of shadow. The magnitude of the eclipse at that
point is

1.5433 + u - ||
0.5461 + Zu (52.2)

Lunar eclipses

In the case of a lunar eclipse, Y represents the least distance
from the center of the Moon to the axis of the Earth's shadow, in
units of the Earth's equatorial radius. The quantity Yy is positive
or negative depending upon the Moon's center passing north or south
of the axis of shadow. The radii at the distance of the Moon, again
in equatorial Earth radii, are:

for the penumbra: p

]

1.2848 + u

for the umbra : 0.7403 - u

while the magnitude of the eclipse may be found as follows :

1.5573 + u - |yl

0.5450 (52.3)
1.0128 - u - |yl

0.5450 (52.4)

for penumbral eclipses :

for umbral eclipses :
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If the magnitude is negative, this indicates that there is no
eclipse.

The semidurations of the partial and total phases in the umbra
can be found as follows. Calculate
P 1.0128 -~ u
T 0.4678 ~ u

n = 0.5458 + 0.0400 cos M’

L]

Then the semidurations in minutes are:

partial phase : %? p2 - y2 total phase :

/TZ _YZ

R

For the semiduration of the partial phase in the penumbra, find
H = 1.5573 + u, and then the semiduration in minutes is

.6_9 /HZ_.YZ
n

It must be noted that the contacts of the Moon with the penumbra
cannot be observed, and that most penumbral eclipses (in which the
Moon enters only the penumbra of the Earth) cannot be discerned vi-
sually. Only at eclipses occurring deep in the penumbra can a weak
shading on the Moon's northern or southern limb be seen.

In the formulae given above, the increase of the theoretical ra-
dii of the shadow cones by the Earth's atmosphere is taken into ac-
count. However, instead of the traditional rule consisting of in-
creasing by 1/50 the theoretical radii, we have preferred the method
used since 1951 by the Connaissance des Temps — see for instance
Reference [5]. As compared with the results of the 'French rule',
the magnitude of a lunar eclipse calculated by using the traditional
rule is too large by about 0.005 for umbral eclipses, by about 0.026
for penumbral eclipses.

To obtain the results according to the traditional rule (1/50),
the following changes should be made to the constants in the ex-
pressions given above :

replace 1.2848 by 1.2985
0.7403 by 0.7432
1.5573 by 1.5710
1.0128 by 1.0157
0.4678 by 0.4707

For the predictions of lunar eclipses, such as those published in
the various almanacs, it is customary to assume the penumbra and the
umbra to be exactly circular, and to use a mean radius for the
Earth. In fact, the shadow will differ somewhat from a circular cone
as the Earth is not a true sphere. By simple geometrical considera-
tions, it is found that the Earth's shadow, at the Moon's distance,
must be more flattened than the terrestrial globe, the mean value
for the flattening of the umbra being 1/214 [6]. The true flatte-
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ning of the umbra is perhaps even still larger. Soulsby [7] finds a
mean oblateness of 1/102 from observations made at 18 lunar eclipses
in the period 1974 -1989.

Example 52.a = Solar eclipse of 1993 May 21.

Since May 21 is the 141" day of the year, the given date corres-
ponds to 1993.38. Formula (47.2) then gives

k = -81.88, whence k = -82.
Then, by means of formulae (47.3) and (47.1),
JDE = 2449 128.5894
We find further

M = 135°.9142
M'= 244°.5757
F = 165°7296
Q = 253°.0026
Py = 165°.7551

Because 180°-F is between 13°9 and 21°0, the eclipse is uncer-
tain. We further find :

P = 40.1842
Q = +5.3589
Y = +1.1348
u = +0.0097

Because |y| is between 0.9972 and 1.5433 +u, the eclipse is a
partial one. Using formula (52.2), we find that the maximum magni-
tude is

1.5433 + 0.0097 - 1.1348
0.5461 + 0.0194

= 0.740

Because F is near 180°, the eclipse occurs near the Moon's des-
cending node. Because Y is positive, the eclipse is visible in the
northern hemisphere of the Earth.

To obtain the time of maximum eclipse, we add to JDE the terms
given by formula (52.1). This gives

JDE = 2449128.5894 + 0.5085 = 2449129.0979

which corresponds to 1993 May 21, at 14h21m.0Q TD.

The correct values, resulting from an accurate calculation [2],
are 140200148 TD, vy =+1.1370, and a maximum magnitude of 0.735.
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Example 52.b — Solar eclipse of 2009 July 22.

As in the preceding Example, we find :

k =118

JDE = 2455034.7071
M = 196°.9855
M'=  7°.9628
F = 179°.8301
Fy= 179°.8531

Corrected JDE = 2455034.6088 = 2009 July 22, at 2h37m TD,

P = ~0.0573
Q0 = +4.9016
Y = +0.0695
u = -0.0157

Because |Y| < 0.9972, the eclipse is central. Because u is ne-
gative, the eclipse is total. Because |vy| is small, the eclipse is
visible from the equatorial regions of the Earth. Because F = 180°
the eclipse takes place near the descending node of the Moon's or-
bit.

Example 52.¢ — Lunar eclipse of June 1973.

We find successively :

k = -328.5

JDE = 2441849.2992
M = 161°.4437
M' = 180°.7018
F = 345°.4505

Corrected JDE = 2441849.3687 = 1973 June 15, at 20h51m TD.

Y = -1.3249
u = +0.0197

The eclipse took place near the Moon's ascending node (F = 360°)
and the Moon's center passed south of the center of the Earth's um-
bra (because Yy < 0).

According to formula (52.4), the magnitude in the umbra was equal
to -0.609. Since this is negative, there was no eclipse in the um-
bra. Using formula (52.3), we find that the magnitude in the penum-
bra was 0.463. Hence, the eclipse was a penumbral one.

According to the Connaissance des Temps, maximum eclipse took
place at 20R50m.7 TD, and the magnitude in the penumbra was 0.469.
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Example 52.d — Find the first lunar eclipse after 1997 July 1.

For 1997.5, formula (47.2) gives k = -30.92, so we must try the
value k = -30.5. This gives F = 125°2605, which differs more than
21 degrees from the nearest multiple of 180°, and hence gives no
eclipse.

The next Full Moon, k = -29.5, gives F = 155°.9310, hence again
no eclipse. But it is evident that the next Full Moon will give
F = 187° and thus give rise to an aclipse. We then find, as before:

k = -28.5

JDE = 2450 708.4759
M = 253°,.0507
M'=  5°.7817
F = 186°.6015

Corrected JDE = 2450708.2835 = 1997 September 16, at 18h48m.2
Dynamical Time, or 18M47® UT (if we adopt the value AT = TD - UT
= +63 seconds).

Yy = -0.3791, u = -0.0131.

Formula (52.4) then yields a magnitude of 1.187. Hence, the
eclipse is a total one in the umbra. We find further :

P =1.0259, T = 0.4809, H = 1.5442, n = 0.5856.

Semiduration of partial phase :

60
0.5856

/(1.0259)2 ~ (0.3791)2 98 minutes

Semiduration of total phase :

60
0.5856

30 minutes

/(0.4809)2 ~ (0.3791)2

Semiduration of penumbral phase :

60
0.5856

J/(1.5442)2 - (0.3791)2

153 minutes

Hence, in Universal Time :

first contact with the penumbra : 1ghy7m - 153m = fghi4m
first contact with the umbra : 1gh4ym - ggm = 17hgom
beginning of total phase : 18b47m - 30m = jghyym
maximum of the eclipse : 18470
end of total phase : 1ghsaym + 30m = johiym
last contact with the umbra : 18h47m 4+ ggm = 20h25m

last contact with the penumbra : 18h47m 4 1530 = 21h2qm
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Notes about the accuracy

The algorithms given in this Chapter are not intended to obtain
highly accurate results. Still, for lunar eclipses the results will
generally be precise enough for historical research, or when high
accuracy is not needed. On the other hand, as has been said at the
beginning of this Chapter, accurate data for modern solar eclipses
can be obtained by using our Elements of Solar Eclipses [2].

The formula given for Y does not yield rigorously exact results.
This is quite evident, if we consider the fact that only twelve pe-
riodic terms are used to calculate the quantities P and Q, while
hundreds of terms are needed to obtain accurate positions of the Sun
and the Moon. Even formulae (52.2), (52.3) and (52.4), and the ex-
pressions for the quantities P, T, n and H, are not rigorously
exact.

For the 221 solar eclipses of the period 1951-2050, the mean
error of the values of Yy as calculated by using the algorithm of
this Chapter is 0.00065, while the maximum error is 0.0024, which
corresponds to 15 kilometers. Considering the simplicity of our
formulae, this accuracy is quite satisfactory.

From what precedes, it results that in Jimiting cases the type
of an eclipse will still be unknown. In such a case, an accurate
calculation is needed to settle the question.

Further, in a search procedure for eclipses, a small safety mar-
gin should be considered in order to be sure that no eclipse will
be overlooked. For instance, while the correct condition for a cen-
tral eclipse is indeed |vy| < 0.9972 (*), a limiting value of 1.000
or even 1.005 should be used in order to find all possible central
eclipses when use is made of the value of y obtained with the me-
thod described in this Chapter.

Here are some examples.

For the solar eclipse of 1935 January 5 (k = -804), our method
gives y = -1.5395 and u = -0.00464, whence |y| > u+1.5433 =
1.5387, so we might think there was no eclipse on that date. For-
mula (52.2) yields the value -0.002 (negative!) for the maximum
magnitude. The correct value of Yy was -1.5383, however, so there
was a very small partial eclipse on 1935 January 5, with a maximum
magnitude of 0.001.

For the annular solar eclipse of 1957 April 323 (k = -528), our
algorithm yields the value Yy =40.9966, so one might think this was
a central eclipse. The exact value was vy = 40.9990, so it was ac-
tually a non-central annular eclipse.

For the lunar eclipse of 1890 November 26 (k = -1349.5), our al-
gorithm gives a magnitude (in the umbra) of -0.007. In fact, it was
a very small partial eclipse in the umbra.

(*) In fact, the 'constant' 0.9972 may vary between 0.9970 and
0.9974 from one eclipse to another.
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Exercices

Find the first solar eclipse of the year 1979, and show that it was
a total one visible from the northern hemisphere.

Was the solar eclipse of April 1977 a total or an annular one?
Show that there was no eclipse of the Sun in July 1947.

Show that there are four solar eclipses in the year 2000, and that
all four are partial eclipses.

Show that there will be no lunar eclipse in January 2008.
Show that there were three total eclipses of the Moon in 1982.

Find the first lunar eclipse of the year 1234. (Answer: the partial
lunar eclipse of 1234 March 17).
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Chapter 53

Semidiameters of the Sun, Moon

and Planets

Sun and Planets

The semidiameters s of the Sun and planets are computed from

where s, is the body's semidiameter at unit distance (1 AU),

Se

A

g =

A is the body's distance to the Earth, in AU.

For the Sun, the value adopted in the calculations is [1]

So

15'59".63 = 959'.63.

For the planets, the following values of s, have been used for

many years [2] :

Mercury 3734
Venus 8.41
Mars 4.68
Jupiter :
equatorial 98.47
polar 91.91

Later, the following values have been adopted [3] :

Saturn :

n
equatorial 83.33

polar
Uranus

Neptune

359

74.57
34.28
36.56

(A)
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"
Mercury 3.36 Saturn : "
equatorial 82.73

Venus 8.34 polar 73.82
Mars 4.68 Uranus 35.02 (B)
Jupiter :

equatorial 98.44 Neptune 33.50

polar 92.06 Pluto 2.07

Note that, according to the latter values, Neptune is smaller
than Uranus.

For Venus, the value 8".34 refers to the planet's crust, not to
the top cloud level as seen from the Earth. For this reason, we
prefer to use the older value 8. 41 for Venus when calculating as-
tronomical phenomena such as transits and occultations.

In the case of Saturn, let a and b be the equatorial and the
polar semidiameters at unit distance. Then, while the apparent equa-
torial semidiameter s, is given by s, = a/A, the apparent polar
semidiameter should be calculated from

sp = se /1 -k cos?B

where k=1 - (é%)z, and B is the Saturnicentric latitude of the
Earth (see Chapter 44).

If the older values [A) are chosen, namely a = 83'.33 and b=
74".57, then k = 0.199197. If one adopts the values from (B}, then
k = 0.203 800.

Strictly speaking, this procedure should also be used in the case
of Jupiter. But for this planet the angle B (called Dg in Chapter
42) can never exceed 4°, so it will generally be sufficient to put
sp = b/ A here.

Moon

Let A be the distance between the centers of Earth and Moon in
kilometers, T the equatorial horizontal parallax of the Moon, s its
geocentric semidiameter, and k the ratio of the Moon's mean radius
to the equatorial radius of the Earth. In the Astronomical Epheme-
ris for the years 1963 to 1968, the value k = 0.272 481 was used in
eclipse calculations, and we have used this value ever since.

Then we have rigorously
6378.14

sin m = A and sin s = k sin ™
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but in most cases it will be sufficient to use the formula

358 473 400

s (in arcseconds) = A

which gives an error less than 0.0005 arcsecond as compared with the
results obtained by the expressions given before.

Computed in this way, the Moon's semidiameter is geocentric, that
is, it applies to a fictitious observer located at the center of the
Earth. The observed, topocentric semidiameter s’ will be slightly
larger than the geocentric semidiameter; it is given by

. , _ sins _ k .
sin s’ = = ~ gin 7
q q

while the topocentric distance of the Moon (that is, the distance
from the observer to the center of the Moon) is A" = gh,
g being given by formula (39.7).

Alternatively, the topocentric semidiameter s' of the Moon can
be obtained, with an accuracy which is sufficient for many purposes,
by multiplying the geocentric value s by

1 4+ sinh sin 7
where h is the altitude of the Moon above the observer's horizon.

The increase in the Moon's semidiameter, due to the fact that the
observer is not geocentric, is zero when the Moon is on the horizon,
and a maximum (between 14" and 18") when the Moon is at the zenith.
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Chapter 54

Stellar Magnitudes

Adding stellar magnitudes

If two stars have magnitudes m; and m,, vespectively, their
combined magnitude m can be calculated as follows :

x = 0.4 (my - my)
m=m, - 2.5 log (10¥ + 1)

where the logarithm is to the base 10.

Example 54.a — The magnitudes of the components of Castor (a Gem)
are 1.96 and 2.89. Calculate the combined magni-
tude.

One finds
x = 0.4 (2.89-1.96) = 0.372

2.89 - 2.5 log (10°372 + 1) = 1.58

3
It

If more than two stars are involved, with magnitudes my, m,,
mij, ...., the combined magnitude m can better be found from

m = -2.5 log 2.10°0-4m;

where, again, the logarithm is to the base 10. The symbol I indi-
cates that the sum must be made of all quantities

10—0.4 my

363
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Example 54.b — The triple star B Mon has components of magnitu-
des 4.73, 5.22 and 5.60, respectively. Calculate
the combined magnitude.

-2.5 1og (10(~0.a)(4.73) 4+ 10(-0-8)(5.22) 10(-0.4)(5.60))

m =
= -2.5 log (0.01282 + 0.00817 + 0.00575) = 3.93
Example 54.c — A star cluster consists of
4 stars of (mean) magnitude 5.0
14 - - 6.0
23 - - 7.0
38 - - 8.0

Calculate the combined magnitude.

10(—0.4)(5)

4 x 0.04000
14 x 107096 _ 4 4557,
23 x 100709 _ g 3645
38 x 10470428 _ 4 47308

Sum $ = 0.15617

Combined magnitude = =-2.5 log 0.15617 = +2.02
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Brightness ratio

If two stars have magnitudes m; and m,, respectively, the ratio
I,/I, of their apparent luminosities can be found from

I x
x =0.4 (my ~ my) =L - j0
2" M I,

If the brightness ratio I;/I, is given, the corresponding mag-
nitude difference Am = m; - m; can be calculated from

I
am = 2.5 log =&
Iy
Example 54.d — How many times is Vega (magnitude 0.14) brighter

than Polaris (magnitude 2.12) ?
x = 0.4 (2.12-0.14) = 0.792
10¥ = 6.19

Hence, Vega is 6.19 times as bright as the Pole Star.

Example 54.e — A star is 500 times as bright as another one.

The corresponding magnitude difference is

Am = 2.5 log 500 = 6.75
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Distance and Absolute Magnitude

If T is a star's parallax expressed 'in seconds of a degree ("),
this star's distance to us is equal to

1
-, parsecs or

é4%§lg-light-years

If T is a star's parallax expressed in seconds of a degree ("),
and m is the apparent magnitude of this star, its absolute magni-
tude M can be calculated from

M=m+5+51logm

where, again, the logarithm is to the base 10.

If d is the star's distance in parsecs, we have

M=m+5-5logd

Unlike the parallaxes within the solar system (see Chapter 39),
the parallax considered here is, of course, the stellar, annual
parallax resulting from the orbital motion of the Earth around the
Sun; so it is not the parallax related to the dimensions of the
Earth's globe!

The parsec is the unit of length equal to the distance at which
the radius of the Earth's orbit (1 AU) subtends an angle of 1"

(parallax = 1"). The name is a contraction of parallax and second.

1 parsec 3.2616 light-years
206265 astronomical units

30.8568 x 10?2 kilometers

The absolute magnitude of a star is the apparent magnitude of
this star if it were located at a distance of 10 parsecs.
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Binary Stars

The orbital elements of a binary star are the following ones :

P

It

the period of revolution expressed in mean solar years;

the time of perihelion passage, generally given as a year and
decimals (for instance, 1945.62);

e = the eccentricity of the true orbit ;

]
It

the semimajor axis expressed in seconds of a degree (");

8
It

the inclination of the plane of the true orbit to the plane
at right angles to the line of sight. For direct motion
in the apparent orbit, i ranges from 0° to 90°; for
retrograde motion, i is between 90 and 180 degrees. When
i is 90°, the apparent orbit is a straight line passing
through the primary star;

the position angle of the ascending node;

"

the longitude of periastron; this is the angle in the plane
of the true orbit measured from the ascending node to the
periastron, taken always in the direction of motion.

When these orbital elements are known, the apparent position
angle 8 and the angular distance p can be calculated for any given
time t, as follows.

360°
n = ——;7— M=n(t-T)
where t is expressed as a year and decimals (just as T); =n is the
mean annual motion of the companion, expressed in degrees and deci-
mals, and is always positive. M is the companion's mean anomaly
for the given time t.

367
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Then solve Kepler's equation
E =M+ e sink

by one of the methods described in Chapter 29, and then calculate
the radius vector r and the true anomaly v from

r=a(l-ecosE)

v o_ 1+e E
tanz- l—etanZ

Then find (8- Q) from

sin (v+w) cos i
cos (v+w) (55.1)

tan (6 -Q) =

0f course, this formula can be written
tan (8- Q) = tan(v+uw) cos i

but in this case the correct quadrant for (6 -) is not determi-
ned. As in previous cases mentioned in this book, one may apply the
ATN2 function, if available in the programming language, to the nu-
merator and the denominator of the fraction in (55.1). This will
place the angle (6 - Q) at once in the correct quadrant.

When (8- Q) is found, add Q to obtain 6. If necessary, reduce
the result to the interval 0° — 360°.

Remember that, by definition, position angle 0° means northward
on the sky, 90° east, 180° south, and 270° west. Consequently, if
0° < 8 < 180°, the companion is 'following' the primary star in the
diurnal motion of the celestial sphere; if 6 is between 180° and
360°, the companion is 'preceding' the primary star.

The angular separation p is found from

_ rcos(v+w)

P = "os(8-Q)
Exampie 55.a — According to E. Silbernagel (1929), the orbital
elements for 71 Coronae Borealis are:
P = 41.623 years i = 59°.025
T = 1934.008 = 23°,717
e = 0.2763 w = 219°.907
a = 0".907

Calculate 6 and p for the epoch 1980.0.
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We find successively :

n = 8.64906
t-~T = 1980.0 - 1934.008 = 45.992
M = 397°.788 = 37°.788
E = 49°.897
r = 0".74557
v = 63°416
~0.500 813
tan (8- Q) = 75530700

6 -0 = -65°291
-41°.574 = 318°.4
= 0".411

T @
"

As .an exercise, calculate an ephemeris for y Virginis, using the
following elements [1] :

P = 168.68 years i = 148°.0
T = 2005.13 Q = 36°9 (2000.0)
e = (0.885 w = 256°5
a = 3'".697
Answer. — Here is an ephemeris with an interval of four years,

starting at 1980. The position angle 6 decreases with time, since
i is between 90 and 180 degrees.

o 1

year = 1980.0 6 = 296.65 p = 3.78
1984.0 293.10 3.43
1988.0 288.70 3.04
1992.0 282.89 2.60
1996.0 274.41 2.08
2000.0 259.34 1.45
2004.0 208.67 0.59
2008.0 35.54 1.04
2012.0 12.72 1.87

Least separation (0".36) occurs at epoch 2005.21.

The position angles 6 refer to the mean equator of 2000.0, that
is, for the same epoch as the angle Q.
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Eccentricity of the apparent orbit

The apparent orbit of a binary star is an ellipse whose eccentri-
city e’ is generally different from the eccentricity e of the true
orbit. It may be interesting to know e’, although this apparent
eccentricity has no astrophysical significance.

The following formulae have been derived by the author [2]:

(1 - e2cos?w) cos?i

2

e* sin W cos W cos I

1 - e? sin?w
(A-c¢)2 + 4B2

2 ____ZJZEL___
T aAa+c¢c+ /D

O N B
]

It should be noted that e’ is independent of the orbital ele-
ments a and £, and that it can be smaller as well as larger than
the true eccentricity e.

Example 55.b — Find the eccentricity of the apparent orbit of n
Coronae Borealis. The orbital elements are given
in Example 55.a.

We find
A = 0.25298
B = 0.01934
¢ = 0.96858
D = 0.51358
e' = 0.860

Hence, for this binary the apparent orbit is much more elongated
than the true orbit.
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Calculation of a Planar Sundial

by R. Sagot and D. Savoie (*)

One wishes to draw a planar sundial of any given orientation and in-
clination, provided with a straight stylus of length a perpendicu-
lar to its surface., Hence, this stylus generally is not directed
towards the celestial pole. This sundial has the following principal
parameters :

~ the latitude ¢ of the place;

— the gnomonic declination D, that is, the azimuth of the perpendi-
cular to the sundial's plane, measured from the southern meridian
towards the west, from 0 to 360 degrees. So, if D = 0°, the sundial
is 'due south'; if p = 270°, it is ‘'due east'; etc.;

— the zenithal distance z of the direction defined by the straight
stylus. If z = 0°, the sundial is horizontal; in this case, D is
meaningless — but see the special case later in this Chapter.

If z = 90°, the sundial is vertical.

The coordinates x and y of the tip of the shadow of the straight
stylus of length a are measured in an orthogonal coordinate system
situated in the sundial's plane. The origin of this system coincides
with the footprint of the stylus; the x-axis is horizontal, while
the y-axis coincides with the line of greatest slope of the sundial.
In all cases, x is measured positively towards the right, while y
is positive upwards.

The Sun's hour angle H is measured from the upper meridian tran-
sit (true noon); it increases by 15 degrees per hour. For example,

(*) Robert SAGOT and Denis SAVOIE are former president and president,
respectively, of the 'Commission des Cadrans Solaires' (Sundials
Section) of the Société Astronomique de France.
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H = -45° corresponds to 9 hours a.m. (true solar time), H = +15° to
1 hour p.m., etc.

In the following formulae, for each hour angle H the declination
8 of the Sun will take the successive values (in degrees) -23.44,
-20.15, ~-11.47, 0, +11.47, +20.15, and +23.44, which correspond to
the dates when the longitude of the Sun is a multiple of 30°.

In the course of a day, the tip of the shadow of the stylus will
describe on the sundial's plane a curve which is a conic (a circle,
an ellipse, a parabola, or an hyperbola). However, if § = 0° the
curve is always a straight line.

Calculate

I}

sin ¢ cos z - cos ¢ sin z cos D

sin D sin z sin H + (cos ¢ cos z + sin ¢ sin z cos D) cos H
+ P tan §

Ny = cos D sinH - sin D (sin ¢ cos H - cos ¢ tan §)

Ny = cos z sinD sin H - (cos ¢ sinz ~ sin ¢ cos z cos D) cos H
- (sin¢ sinz + cos ¢ cos z cos D) tan §

Then the coordinates x and y are given by

N
= g4 —X

X = a
Q

L 2
y=ag

For each hour angle, one obtains a series of points; by connec-
ting these points, an hour line is created on the sundial. The point
(if it exists) to which the hour lines converge, is called the cen-
ter of the sundial; it is also the point of fixation of the polar
stylus, which is parallel to the Earth's axis of rotation. Its coor-
dinates x, and y, are given by

X, = -§~cos ¢ sin D, Yo = — %—(sin ¢ sin z + cos ¢ cos z cos D)

The length u of the polar stylus, from its point of fixation to
the tip of the perpendicular stylus of length a, is

while the angle Y which the polar stylus makes with the sundial's
plane is given by

sin ¥ = fPI
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Sun

Celestial

Pole
‘k\\\\P

The plane represents the plane of the sundial. OP is the
perpendicular stylus, of length a, while lP is the polar
stylus, length U. P' is the shadow (X, y) of the tip of the
stylus. The point 1 is called the center of the sundial,
while 0 is the origin of the X-y system.

The formulae for the position of the polar stylus become meaning-
less when P =0, that is when cos D tan z = tan ¢. This means that
the polar stylus is then parallel to the plane of the sundial.

It is proper to limit the drawing of the sundial to the useful
lines. For example, a vertical sundial oriented 'due north' (D =
180°), at latitude +40°, can never show 11P a.m. (true solar time).
At the same latitude, a vertical sundial oriented ‘'due south' can-
not indicate 19® (= 7R p.m.) near the June solstice.

In order to make sure that the sundial really works, two condi-
tions should be fullfilled: the Sun must be above the horizon, and
the plane of the sundial must be illuminated. Consequently, it is
necessary, for each calculated point (x, y), to verify whether these
two conditions are satisfied simultaneously.

In practice, for a given arc of declination, the calculation
should start at the moment of the geometric rise of the Sun, or at
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the first integer hour following that rise, and stop at the moment
of the geometric sunset. The Sun's hour angle H, at the time of
sunrise or sunset is given by

cos H, = —tan ¢ tan §

with H, < 0 for sunrise, H,> 0 for sunset.

Tor each value of H, one should look at the sign of Q: if this
quantity is negative, this means that the Sun does not illuminate
the plane, and in that case one passes over to the next declination.
Hence, only those values for which Q@ is positive must be retained.

It is possible that, on a given date, Q is at first positive,
then becomes negative, and later is positive again.

Example 56.a — Consider an inclined sundial at latitude 40°N,

with D =70° 2z =50° and a=1. For § =+23°44
(summer solstice), we have H, = -111°33 (or 4035® a.m., true solar
time).

Beginning the calculations with H = -105°, we find Q < 0. This
quantity is negative again for B = -90°, -75°, and -60°. Only from
H = -47° on, is the sundial illuminated, and it will remain illumi-
nated till sunset. Hence, if a step of 15 degrees has been chosen,
the values of x and y should be calculated for H = -45° to +105°.

For H =+30° and § = +23°44, we find x = -0.0390, y = -0.3615.
For H = -15° and § =-11°47, we find x = -2.0007, y = -1.1069.

The coordinates of the center are x, = +3.3880, y, = -3.1102,
and we have Y = 12°.2672.

Example 56.b — Consider a vertical sundial at latitude ¢ = -35°,
with D = 160°, 2z =90°, and a=1.

For & = 0° (equinox), we have H, = -90° and ©Q < 0. Q becomes
positive for H = -57°, so the calculations will be made for H =
-45° till sunset (H, = +90°).

For H = +45° and § = 0°, we find x = ~-0.8439, y = -0.9298.
For H=0° and & = +20°15, we find x = +0.3640, y = -0.7410.

The coordinates of the center are x, = +0.3640, y, =+0.7451,
and we have Y = 50°.3315.
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Example 56.c — Inclined sundial at latitude 40°N, with D = 160°
and z = 75°.

For § = +23°.44, this sundial will be illuminated from sunrise
(when H = -111°) until H = -84°. Then it will be illuminated again
from H = +2° until sunset (H = +111°). So, if a step of 15° has
been chosen, the calculation will be made for H = -105°, -90°, and
then for +15° to +105°.

The formulae given above form the most general case which can
occur in gnomonics. They allow the calculation of the classical hour
lines of true solar time, but also the declination curves, the lines
for mean time (when introducing the equation of time in the calcul-
ation of H), the lines for Universal Time or for zone time, azimuth
and altitude lines, etc.

The formulae simplify greatly for some special cases, which we
shall now examine briefly.

Special cases

(1) Equatorial sundial

The plane of this sundial is parallel to the plane of the equator
and hence there are two sides: the northern side serves for the po-
sitive declinations (spring and summer), the southern side for the
negative declinations of the Sun (autumn and winter). At a place of
latitude ¢, we have

for the northern side : z

90° - ¢ and D= 180°
90° + ¢ and D= O0°

for the southern side : z

The line of 12 hours (# = 0°) coincides with the line of greatest
descending slope. Further,

Q0 =t tan § X, =0
X = sin H Yo =
tan & u = a
cos H v o= 90°
vy tan §

where the upper sign is to be taken for the northern side, the lower
sign for the southern side.
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(2) Horizontal sundial

The sundial's plane is horizontal, so z = 0°. The angle D is not
defined and the direction of the x-axis can be chosen at will. We
shall consider the case D = 0°, where the x-axis is directed towards
the east, the y-axis towards the north. The formulae simplify to

Q =cos ¢ cos H + sin ¢ tan § X, =0
=g SINH R
Q Yo tan ¢
i - a
y=a sin ¢ cos H cos ¢ tan § u = ‘
Q | sin ¢ |
o= [¢]

(3) Vertical sundial

The plane of the sundial is vertical, so z = 90°, The x-axis is
horizontal; the y-axis is directed towards the zenith. The formulae
simplify to

Q = sinD sinH + sin ¢ cos D cos H - cos ¢ cos D tan §

cos D sinH - sin ¢ sinD cosH + cos ¢ sin D tan §

X
Q
_ cos ¢ cos H + sin ¢ tan §
y=-a
Q
X, = —a tan D a
u=__—_~——-_-
Yy, = +a tan ¢ /cos D | cos ¢ cos D

General Remarks

In the case of a sundial with a perpendicular stylus, as conside-
red in this Chapter, it is the extremity of the umbra of that sty-
lus which indicates the time, while in the case of a sundial with
a polar stylus, it is the entire umbra which gives the time.

Because we give the coordinates x,, y, of the center of the sun-
dial, it is always possible to construct the polar stylus IP, if
this is wanted: the polar stylus is the straight line connecting
that center with the extremity of the perpendicular stylus. See the
Figure on page 373.

The advantage of the system of axes x-y used in this Chapter is
that the perpendicular stylus does always exist; this is not always
the case for the polar stylus.



Appendix 1

Some Astronomical Terms

The following notes may be found helpful by those who are not fami-
liar with the technical terms used in this book, but further gui-
dance should be sought from textbooks on astronomy.

The celestial equator is the great circle that is the projection
of the Earth's equator onto the celestial sphere. Its plane is per-
pendicular to the axis of rotation of the Earth.

The celestial poles are the poles of the celestial equator, or the
intersections of the axis of rotation of the Earth with the celes-
tial sphere.

The ecliptic is defined to be the plane of the (undisturbed) orbit
of the Earth around the Sun.

The equinox or, better, the vernal equinox, which is the zero
point of both right ascension and celestial longitude, is defined to
be in the direction of the ascending node of the ecliptic on the
equator. It is that intersection of equator and ecliptic where the
ecliptic runs (eastwards) from negative to positive declinations.
The other intersection, which is diametrically opposite, is the
autumnal equinox.

The equinoxes are the instants when the apparent longitude of
the Sun is 0° or 180°.

Solstices : both the points on the ecliptic 90 degrees away from
the equinoxes, and the instants when the apparent longitude of the
Sun is 90° or 270°.

Celestial longitude, or ecliptical longitude, often called simply
longitude, is measured (from 0° to 360°) from the vernal equinox,
positive to the east, along the ecliptic.

Celestial latitude, or ecliptical latitude, or simply latitude, is
measured (from 0° to +90° or to -90°) from the ecliptic, positive
to the north, negative to the south.
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Right ascension is measured (from 0 to 24 hours, sometimes from
0° to 360°) from the vernal equinox, positive to the east, along the
celestial equator.

Declination is measured (from 0° to %90°) from the equator, posi-
tive to the north, negative to the south.

Owing to the effects of precession and nutation, the ecliptic
and equator, and hence the equinoxes and the poles, are continuously
in motion, and so the current celestial coordinates of a 'fixed'
direction change continuously. The motion of the equator is prima-
rily due to the action of the Sun and the Moon, while the (much slo-
wer) motion of the ecliptic is primarily due to the perturbing ac-
tion of the planets.

Mean equator : the instantaneous celestial equator exclusive of
the periodic perturbations of the nutation.

Mean equator and equinox, or simply mean equinox : an expres-
sion used to denote that the reference system takes into account the
precession (secular effects) but not the nutation (periodic effects).

Coordinates : two (or three) numbers which define the position
of a point on a surface (or in space). Examples: the longitude and
latitude are the two geographical coordinates of a point on the sur-
face of the FEarth; the rectangular coordinates X, Y, 2 of a point
in three-dimensional space.

Heliocentric : referred to the center of the Sun, for instance a
heliocentric orbit, or heliocentric coordinates.

Geocentric: referred to the center of the Earth, for instance a
geocentric observer, or geocentric coordinates.

Topocentric : referred to the observer on the Earth's surface,
for example the topocentric right ascension and declination of the
Moon.

Aberration is the apparent displacement of the position of an
object due to the finite speed of light. The annual aberration of
a star is due to the orbital motion of the Harth around the Sun (or,
more exactly, around the barycenter of the solar system).

Azimuth : the angular distance measured from the South, positive
to the West, along the horizon, to the vertical circle through the
point in question. Navigators and meteorologists measure the azimuth
from the North, positive to the East.

Ascending node: that intersection of the orbital plane with the
reference plane where the latitudinal coordinate is increasing
(going north). The other intersection is the descending node.

Conjunction : that configuration of two celestial objects such
that either their right ascensions or their celestial longitudes are
equal.

Opposition : that configuration of two celestial objects such
that their celestial longitudes differ by 180°. Most frequently used
when one of the objects is the Sun.
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Heliographic coordinate system: a coordinate system on the sur-
face of the Sun.

Planetographic coordinate system: a coordinate system on the
surface of a planet. In the case of Mars, the term areographic is
generally used. For the Moon, the term is selenographic. Compare
with geographic for the Earth.

Epoch : a particular fixed instant used as a reference point on
a time scale, such as B1950.0 or J2000.0.

A Julian century is a time interval of 36525 days.

An ephemeris day is equal to 86400 seconds in the uniform time
scale known as Dynamical Time.

The sidereal time is the measure of time defined by the motion
of the vernal equinox in hour angle; it is the hour angle of that
equinox (at a given place and for a given instant). The true solar
time is the local hour angle of the Sun. The mean solar time is the
hour angle of the mean Sun, and this is measured from mean noon. The
civil time is the mean solar time increased by 12 hours, and thus is
measured from mean midnight. [The expression 'mean time measured
from midnight' is a contradictio in terminis, since the mean (solar)
time by definition is measured from noon. Many people erroneously
use the expression 'Greenwich Mean Time', when in fact Greenwich
civil Time is meant. ]

Universal Time is the civil time on the meridian of Greenwich.

The astronomical unit (AU) is a unit of length used to measure
distances in the solar system. It is often called ‘mean distance of
the Earth to the Sun'. But, rigorously, one AU is the radius of the
circular orbit which a particle of negligible mass, and free of
perturbations, would describe around the Sun with a period of 27/k
days, where k is the Gaussian gravitational constant

k = 0.017 202098 95.

As a consequence, the semimajor axis of the elliptical orbit of the
Earth is not exactly 1 AU, but 1.000001018 AU.

Radius vector : the straight line connecting a body to the cen-
tral body around which it revolves, or the distance between these
bodies at a given instant. The radius vector of a planet or a comet
is generally expressed in astronomical units.

Perihelion : the point of the orbit (of a planet, minor planet or
comet) which is nearest to the Sun. For the corresponding point of
the Moon's orbit with respect to the Earth, the term is perigee.
For a satellite of Jupiter with respect to this planet, the tradi-
tional term is perijove. For a double star, one says periastron.

The geometric position of a planet is the ‘true' position of
that body at the given instant; that is no allowance is being made
for the effects of aberration and light-time.

Astrometric position: see page 216.
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Anomalies. — The mean anomaly (M) of a planet is the angular
distance, as seen from the Sun, between the perihelion and the mean
position of the planet. The angular distance measured from the peri-
helion to the true position of the planet is called the true ano-
maly (v). The eccentric anomaly is an auxiliary quantity needed to
solve Kepler's equation and to obtain afterwards the true anomaly.
The equation of the center is the difference between the true and
the mean anomalies (€ = v - M); it is the difference between the
actual position of the body in the elliptic orbit and the position
the body would have if its angular motion were uniform.

An ephemeris is a table of positions or other calculated data of
a celestial body (Sun, Moon, planet, comet, etc.) for a series of
(generally equidistant) instants. From the Greek e¢nuepos = daily.



Appendix 11

Planets : Periodic Terms

In this Appendix, pages 382-422, the most important periodic terms
from the French planetary theory VSOP87 are given. The successive

columns contain the following data :

- the name of the planet;
— the label of the series;

— the current No. of the term in the series

— the quantities A, B, and C.

In each serijes, the terms are sorted by decreasing value of A.

For example :

Planet Series No. A B C
VENUS RO 1 72334821 0 0
2 489824 4.021518 10213,285 546
3 1658 4.9021 20426.5711
4 1632 2.8455 7860.4194
5 1378 1.1285 11790.6291
6 498 2.587 9683.595
7 374 1.423 3930.210
8 264 5.529 9437.763
9 237 2.551 15720.839
10 222 2.013 19367.189
11 126 2.728 1577.344
12 119 3.020 10404,734
VENUS R1 1 34551 0.89199 10213.28555
2 234 1.772 20426.571
3 234 3.142 0

For more explanation about the use of these terms, see Chapter 31.
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MERCURY Lo 1 440250710 0 0
2 40989415 1.48302034 26087.903141 57
3 5046 294 4.4778549 52175.806283 1
4 855 347 1.165203 78263.709 425
5 165590 4.119692 104351 .612 566
6 34562 0.77931 130439.51571
7 7583 3.7135 156 527.4188
8 3560 1.6120 1109.3786
9 1803 4.1033 5661.3320
10 1726 0.3583 182615.3220
11 1590 2.9951 25028.5212
12 1365 4.5992 27197.2817
13 1017 0.8803 31749.2352
14 714 1.541 24978.525
15 644 5.303 21535.950
16 451 6.050 51116.424
17 404 3.282 208 703.225
18 352 5.242 20426.571
19 345 2.792 15874.618
20 343 5.765 955.600
21 339 5.863 25558.212
22 325 1.337 53285.185
23 273 2.495 529.691
24 264 3.917 57837.138
25 260 0.987 4551.953
26 239 0.113 1059.382
27 235 0.267 11 322.664
28 217 0.660 13521.751
29 209 2.092 47623.853
30 183 2.629 27043.503
31 182 2.434 25 661.305
32 176 4.536 51066.428
33 173 2.452 24 498.830
34 142 3.360 37410.567
35 138 0.291 10213.286
36 125 3.721 39609.655
37 118 2.781 77 204.327
38 106 4.206 19804.827
MERCURY L1} 1 2608814706223 0 0
2 1126008 6.2170397 26087.903141 6
3 303471 3.055655 52175.806 283
4 80538 6.104 55 78 263,709 42
5 21245 2.83532 104 351.61257
6 5592 5.8268 130439.5157
7 1472 2.5185 156 527.4188
8 388 5.480 182615.322
9 352 3.052 1109.379
10 103 2,149 208 703.225
11 94 6.12 27197.28
12 91 0.00 24978 .52
13 52 5.62 5661.33
14 44 4.57 25028.52
15 28 3.04 51066.43
16 27 5.09 234791.13
MERCURY L2 1 53050 0 0
2 16904 4.69072 26087.903 14
3 7397 1.3474 52175.8063
4 3018 4.4564 78263.7094
5 1107 1.2623 104 351.6126
6 378 4.320 130439.516
7 123 1.069 156 527.419
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MERCURY L2 8 39 4.08 182615.32
(cont.) 9 15 4.63 1109.38
10 12 0.79 208 703.23
MERCURY L3 1 188 0.035 52175,.806
2 142 3.125 26 087.903
3 97 3.00 78 263.71
4 44 6.02 104351.61
5 25 0 0
6 18 2.78 130439.52
7 7 5.82 156527 .42
8 3 2.57 182615.32
MERCURY L4 1 114 3.1416 0
2 3 2.03 26087.90
3 2 1.42 78263.71
4 2 4.50 52175.81
5 1 4.50 104351 .61
6 1 1.27 130439.52
MERCURY LS 1 1 3.14 0
MERCURY BO 1 11737529 1.98357499 26 087.903141 57
2 2388077 5.0373896 52175.806 2831
3 1222840 3.1415927 0
4 543252 1,796 444 78 263.709425
5 129779 4.832 325 104 351.612 566
6 31867 1.58088 130439.51571
7 7963 4.6097 156527.4188
8 2014 1.3532 182615.3220
9 514 4.378 208 703.225
10 209 2.020 24978 .525
11 208 4,918 27197.282
12 132 1.119 234791 .128
13 121 1.813 53285.185
14 100 5,657 20426.571
MERCURY Bl 1 429151 3.501698 26 087.903142
2 146 234 3.141 593 0
3 22675 0.01515 52175.806 28
4 10895 0.48540 78 263.709 42
5 6353 3.4294 104351 .6126
6 2496 0.1605 130439.5157
7 860 3.185 156 527.419
8 278 6.210 182615.322
9 86 2.95 208 703.23
10 28 0.29 27197.28
11 26 5.98 234791.13
MERCURY B2 1 11831 4.79066 26087.903 14
2 1914 0 0
3 1045 1.2122 52175.8063
4 266 4.434 78263.709
5 170 1.623 104 351.613
6 96 4.80 130439,52
7 45 1.61 156 527.42
8 18 4,67 182615.32
9 7 1.43 208 703.23
MERCURY B3 1 235 0.354 26 087,903
2 161 0 0
3 19 4.36 52175.81
4 6 2,51 78 263.71
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MERCURY B3 5 5 6.14 104 351.61
(cont.) 6 3 3.12 130439.52
7 2 6.27 156 527.42
MERCURY B4 1 4 1.75 26 087.90
2 1 3.14 Y]
MERCURY RO 1 39528 272 0 0
2 7834132 6.1923372 26087.9031416
3 795526 2.959897 52175.806 283
4 121282 6.010642 78263.709 425
5 21922 2.77820 104351.61257
6 4354 5.8289 130439.5157
7 918 2.597 156 527.419
8 290 1.424 25028.521
9 260 3.028 27197.282
10 202 5.647 182615.322
11 201 5.592 31 749.235
12 142 6.253 24978.525
13 100 3.734 21 535.950
MERCURY Rl 1 217348 4.656 172 26087.903142
2 44142 1.42386 52175.806 28
3 10094 4.47466 78 263,709 42
4 2433 1.2423 104351.6126
5 1624 0 0
6 604 4,293 130439.516
7 153 1.061 156 527.419
8 39 4.11 182615.32
MERCURY R2 1 3118 3.0823 26 087.9031
2 1245 6.1518 52175.8063
3 425 2,926 78 263,709
4 136 5.980 104351.613
5 42 2.7 130439.52
6 22 3.14 0
7 13 5.80 156 527.42
MERCURY R3 1 33 1.68 26 087.90
2 24 4.63 52175.81
3 12 1.39 78263.71
4 5 4.44 104 351 .61
5 2 1.21 130439.52
VENUS Lo 1 317614667 0 0
2 1353968 5.5931332 10213.2855462
3 89892 5.306 50 20426.571 09
4 5477 4.4163 7860.4194
5 3456 2.6996 11790.6291
6 2372 2.9938 3930.209 7
7 1664 4.2502 1577.3435
8 1438 4.1575 9683.5946
9 1317 5.1867 26.2983
10 1201 6.1536 30639.8566
11 769 0.816 9437.763
12 761 1.950 529.691
13 708 1.065 775.523
14 585 3.998 191.448
15 500 4.123 15720.839
16 429 3.586 19367.189
17 327 5.677 5507.553
18 326 4.591 10404.734
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VENUS L0 19 232 3.163 9153.904
(cont.) 20 180  4.653 1109.379
21 155  5.570 19651.048
22 128 4.226 20.775
23 128 0.962 5661.332
24 106  1.537 801.821
VENUS L1 1 1021352943053 0 0
2 95708  2.46424 10213.285 55
3 14445  0.51625 20426.571 09
4 213 1.795 30639.857
5 174  2.655 26.298
6 152 6.106 1577.344
7 82 570 191.45
8 70  2.68 9437.76
9 52 3.60 775.52
10 28 1.03 52969
11 30 1.25 5507.55
12 25 6.11 10404.73
VENUS L2 1 54127 0 0
2 3891  0.3451 10213.2855
3 1338 2.0201 20426.5711
4 24 2.05 26.30
5 19  3.54 30639.86
6 10 3.97 775.52
7 7 1.52 1577.34
8 6 1.00 191.45
VENUS L3 1 136 4.804 10213.286
2 78 3.67 20426.57
3 26 0 0
VENUS L4 1 114 31416 0
2 3 5021 20426.57
3 2 251 10213.29
VENUS Ls 1 1 3.14 0
VENUS BO 1 5923638  0.2670278 10213.285 546 2
2 40108  1.14737 20426.571 09
3 32815  3.14159 0
4 1011 1.0895 30639.8566
5 149  6.254 18073.705
6 138 0.860 1577.344
7 130 3.672 9437.763
8 120 3.705 2352.866
S 108 4.539 22003.915
VENUS Bl 1 513348  1.803643 10213.285 546
2 4380  2.3862 20426.571 1
3 199 0 0
4 197  2.530 30639.857
VENUS B2 1 22378 3.38509 10213.285 55
2 282 0
3 173 5.256 20426.571
4 27  3.87 30639.86
VENUS B3 1 647  4.992 10213.286
2 20 314 0
3 6 0.77 20426.57
4 3 5.4 30639.86
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VENUS B4 1 14 0.32 10213.29
VENUS RO 1 72334821 0 0
2 489 824 4.021518 10213.285546
3 1658 4.9021 20426.5711
4 1632 2.8455 7860.4194
5 1378 1.1285 11790.6291
6 498 2.587 9683.595
7 374 1.423 3930.210
8 264 5.529 9437.763
9 237 2.551 15720.839
10 222 2,013 19367.189
11 126 2.728 1577.344
12 119 3.020 10404.734
VENUS R1 1 34551 0.89199 10213.285 55
2 234 1.772 20426.571
3 234 3.142 0
VENUS R2 1 1407 5.0637 10213.2855
2 16 5.47 20426 .57
3 13 0 0
VENUS R3 1 50 3.22 10213.29
VENUS R4 1 1 0.92 10213.29
EARTH Lo 1 175347046 0 0
2 3341656 4.669 2568 6283.0758500
3 34894 4.62610 12566.151 70
4 3497 2.7441 5753.3849
5 3418 2.8289 3.5231
6 3136 3.6277 77713.7715
7 2676 4.4181 7860.4194
8 2343 6.1352 3930.2097
9 1324 0.7425 11506.769 8
10 1273 2.0371 529.6910
11 1199 1.1096 1577.3435
12 990 5.233 5884.927
13 902 2.045 26.298
14 857 3.508 398.149
15 780 1.179 5223.694
16 753 2.533 5507.553
17 505 4.583 18849.228
18 492 4.205 775.523
19 357 2.920 0.067
20 317 5.849 11790.629
21 284 1.899 796.298
22 271 0.315 10977.079
23 243 0.345 5486.778
24 206 4.806 2544 .314
25 205 1.869 5573.143
26 202 2.458 6069.777
27 156 0.833 213.299
28 132 3.411 2942.463
29 126 1.083 20.775
30 115 0.645 0.980
31 103 0.636 4694.003
32 102 0.976 15720.839
33 102 4.267 7.114
34 99 6.21 2146.17
35 98 0.68 155.42
36 86 5.98 161 000.69



pPlanets : Periodic Terms 387

EARTH Lo 37 85 1.30 6275.96
(cont.) 38 85 3.67 71430.70
39 80 1.81 17260.15
40 79 3.04 12036.46
41 75 1.76 5088.63
42 74 3.50 3154.69
43 74 4.68 801.82
44 70 0.83 9437.76
45 62 3.98 8827.39
46 61 1.82 7084.90
47 57 2.78 6286.60
48 56 4.39 14143.50
49 56 3.47 627955
50 52 0.19 12139.55
51 52 1.33 1748.02
52 51 0.28 5856.48
53 49 0.49 1194.45
54 41 5.37 8429.24
55 41 2.40 19651.05
56 39 6.17 10447.39
57 37 6.04 10213.29
58 37 2.57 1059.38
59 36 1.71 2352.87
60 36 1.78 6812.77
61 33 0.59 17 789.85
62 30 0.44 83996.85
63 30 2.74 1349.87
64 25 3.16 4690.48
EARTH Ll 1 628 331 966 747 0 0
2 206 059 2.678235 6283.075 850
3 4303 2.6351 12566.1517
4 425 1.590 3.523
5 119 5.796 26,298
6 109 2.966 1577.344
7 93 2.59 18849.23
8 72 1.14 529.69
9 68 1.87 398.1%
10 67 4.41 5507.55
11 59 2.89 5223.69
12 56 2.17 155 42
13 45 0.40 796.30
14 36 0.47 775.52
15 29 2.65 7.11
16 21 5.34 0.98
17 19 1.85 5486.78
18 19 4,97 213.30
19 17 2.99 6275.96
20 16 0.03 2544 .31
21 16 1.43 2146.17
22 15 1.21 10977.08
23 12 2.83 1748.02
24 12 3.26 5088.63
25 12 5.27 1194.45
26 12 2.08 4694.00
27 11 0.77 553.57
28 10 1.30 6286.60
29 10 4.24 1349.87
30 9 2.70 242.73
31 9 5.64 951.72
32 8 5.30 2352.87
33 6 2.65 9437.76
34 6 4.67 4690.48
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EARTH L2 1 52919 0 0
2 8720 1.0721 6283.0758
3 309 0.867 12566.152
4 27 0.05 3.52
5 16 5.19 26.30
6 16 3.68 155.42
7 10 0.76 18 849.23
8 9 2.06 77713.77
9 7 0.83 775.52
10 5 4.66 1577.34
11 4 1.03 7.11
12 4 3.44 5573.14
13 3 5.14 796.30
14 3 6.05 5507.55
15 3 1.19 242.73
16 3 6.12 529.69
17 3 0.31 398.15
18 3 2.28 563.57
19 2 4.38 5223.69
20 2 3.75 0.98
EARTH L3 1 289 5.844 6283.076
2 35 0 0
3 17 5.49 12566.15
4 3 5.20 155.42
5 1 4.72 3.52
6 1 5.30 18849.23
7 1 5.97 242.73
EARTH L4 1 114 3.142 0
2 8 413 6283.08
3 1 3.84 12566.15
EARTH LS 1 1 3.14 0
EARTH BO 1 280 3.199 84 334.662
2 102 5.422 5507.553
3 80 3.88 5223.69
4 44 3.70 2352.87
5 32 4.00 1577.34
EARTH Bl 1 9 3.90 5507.55
2 6 1.73 5223.69
EARTH RO 1 100013989 0 0
2 1670700 3.0984635 6283.0758500
3 13956 3.05525 12566.151 70
4 3084 5.1985 77713.771 5
5 1628 1.1739 5753.3849
6 1576 2.8469 7860.4194
7 925 5.453 11 506.770
8 542 4.564 3930.210
9 472 3.661 5884.927
10 346 0.964 5507.553
11 329 5.900 5223.694
12 307 0.299 5573.143
13 243 4.273 11 790.629
14 212 5.847 1577.344
15 186 5.022 10977.079
16 175 3.012 18849.228
17 110 5.055 5486.778
18 98 0.89 6069.78
19 86 5.69 15720.84



Planets : Periodic Terms
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EARTH RO 20 86 1.27 161 000.69
(cont.) 21 65 0.27 17260.15
22 63 0.92 529.69
23 57 2.01 83996.85
24 56 5.24 71 430.70
25 49 3.25 254431
26 47 2.58 775.52
27 45 5.54 9437.76
28 43 6.01 6275.96
29 39 5.36 4694.00
30 38 2.39 8827.39
31 37 0.83 19651.05
32 37 4.90 1213955
33 36 1.67 12036.46
34 35 1.84 2942.46
35 33 0.24 7084.90
36 32 0.18 5088.63
37 32 1.78 398.15
38 28 1.21 6 286.60
39 28 1.90 6279.55
40 26 4.59 10447.39
EARTH R1 1 103019 1.107 490 6 283.075 850
2 1721 1.0644 12566.151 7
3 702 3.142 0
4 32 1.02 18849.23
5 31 2.84 5507.55
6 25 1.32 5223.69
7 18 1.42 1577.34
8 10 5.91 10977.08
9 9 1.42 6275.96
10 9 0.27 548678
EARTH R2 1 4359 5.7846 6283.0758
2 124 5.579 12566.152
3 12 3.14 0
4 9 3.63 77713.77
5 6 1.87 5573.14
6 3 5.47 18849.23
EARTH R3 1 145 4.273 6 283.076
2 7 3.92 12566.15
EARTH R4 1 4 2.56 6283.08
MARS Lo 1 620347712 0 0
2 18656 368 5.05037100  3340.61242670
3 1108217 5.4009984 6681.224 8534
4 91798 5.75479 10021.837 28
5 27745 5.97050 3.52312
6 12316 0.849 56 2810.92146
7 10610 2.93959 2281.23050
8 8927 4.1570 0.0173
9 8716 6.1101 13362.4497
10 7775 3.3397 5621.8429
11 6798 0.3646 398.1490
12 4161 0.2281 2942 4634
13 3575 1.6619 2544.3144
14 3075 0.8570 191.4483
15 2938 6.0789 0.0673
16 2628 0.6481 3337.0893
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MARS LO 17 2580 0.0300 3344,1355
{cont.) 18 2389 5.0390 796.2980
19 1799 0.6563 529.6910
20 1546 2.9168 1751.5395
21 1528 1.1498 6151.5339
22 1286 3.0680 2146.1654
23 1264 3.6228 5092.1520
24 1025 3,6933 8962.4553
25 892 0.183 16 703.062
26 859 2.401 2914.014
27 833 4.495 3340.630
28 833 2,464 2340.595
29 749 3.822 155.420
30 724 0.675 3738.761
31 713 3.663 1059.382
32 655 0.489 3127.313
33 636 2.922 8432.764
34 553 4.475 1748.016
35 550 3.810 0.980
36 472 3.625 1194.447
37 426 0.554 6283.076
38 415 0.497 213.299
39 312 0.999 6677.702
40 307 0.381 6684.748
41 302 4.486 3532.061
42 299 2.783 6254.627
43 293 4.221 20.775
44 284 5.769 3149.164
45 281 5.882 1349.867
46 274 0 542 3340.545
47 274 0.134 3340.680
48 239 5.372 4136.910
49 236 5.755 3333.499
50 231 1.282 3870.303
51 221 3 505 382,897
52 204 2.821 1221.849
53 193 3.357 3.590
54 189 1.491 9492 146
55 179 1.006 951.718
56 174 2.414 553.569
57 172 0.439 5486.778
58 160 3.949 4562 461
59 144 1.419 135.065
60 140 3.326 2700.715
61 138 4.301 7.114
62 131 4.045 12303.068
63 128 2.208 1592, 596
64 128 1.807 5088.629
65 117 3.128 7903,073
66 113 3.701 1589.073
67 110 1.052 242,729
68 105 0.785 8827.390
69 100 3.243 11773.377
MARS Ll 1 334085627474 0 0
2 1458227 3.6042605 3340.6124267
3 164901 3.926313 6681,224 853
4 19963 4.26594 10021.83728
5 3452 4.7321 3.5231
6 2485 4.6128 13362.4497
7 842 4.459 2281.230
8 538 5.016 398.149
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MARS L1 9 521 4,994 3344.136
(oont.) 10 433 2.561 191 448
11 430 5.316 155.420
12 382 3.539 796.298
13 314 4,963 16 703.062
14 283 3.160 2544.314
15 206 4.569 2146.165
16 169 1.329 3337.089
17 158 4.185 1751.540
18 134 2.233 0.980
19 134 5.974 1748.016
20 118 6.024 6151.534
21 117 2.213 1059382
22 114 2,129 1194.447
23 114 5.428 3738.761
24 91 1.10 1349.87
25 85 3.91 553.57
26 83 5.30 668475
27 81 4.43 529.69
28 80 2.25 8962.46
29 73 2.50 951.72
30 73 5.84 242.73
31 71 3.86 2914.01
32 68 5.02 382.90
33 65 1.02 3340.60
34 65 3.05 3340.63
35 62 4.15 3149 16
36 57 3.89 4136.91
37 48 4.87 213.30
38 48 1.18 3333.50
39 47 1.31 3185.19
40 41 0.71 1592.60
41 40 2.73 7.11
42 40 5.32 20043.67
43 33 5.41 6283.08
44 28 0.05 9492 15
45 27 3.89 1221.85
46 27 5.11 2700.72
MARS L2 1 58016 2.04979 3340.61243
2 54188 0 0
3 13908 2.457 42 6681.22485
4 2465 2.8000 10021.8373
5 398 3.141 13362.450
6 222 3194 3,523
7 121 0.543 155,420
8 62 3.49 16 703.06
9 54 3.54 3344.14
10 34 6.00 2281.23
11 32 4.14 191.45
12 30 2.00 796.30
13 23 4.33 242.73
14 22 3.45 398.15
15 20 5.42 §63.57
16 16 0.66 0.98
17 16 6.11 2146.17
18 16 1.22 1748.02
19 15 6.10 3185.19
20 14 4.02 951.72
21 14 2.62 1349.87
22 13 0.60 1194.45
23 12 3.86 6684.75
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MARS L2 24 11 4.72 2544.31
(cont.) 25 10 0.25 382.90
2 9 0.68 1059.38
27 9 3.83 20043.67
28 9 3.88 3738.76
29 8 5.46 1751.54
30 7 2.58 3149.16
31 7 2,38 4136.91
32 6 5.48 1592.60
33 6 2.34 3097.88
MARS L3 1 1482 0.4443 3340.6124
2 662 0.885 6681.225
3 188 1.288 10021.837
4 41 1,65 13362.45
5 2% 0 0
6 23 2.05 155.42
7 10 1.58 3.52
8 8 2.00 16 703.06
9 5 2.82 242.73
10 4 2.02 3344.14
11 3 4.59 3185.19
12 3 0.65 553.57
MARS L4 1 114 3.1416 0
2 29 5.64 668122
3 24 5.14 3340.61
4 11 6.03 16021.84
5 3 0.13 13362.45
6 3 3.56 155,42
7 1 0.49 16 703.06
8 1 1.32 242.73
MARS Ls 1 1 3.14 0
2 1 4.04 6681.22
MARS BO 1 3197135 3.7683204  3340.6124267
2 298033 4'106170 6681.224 853
3 289105 0 0
4 31366 4.446 51 10021.83728
5 3484 4.7881 13362.449 7
6 443 5.026 3344.136
7 443 5.652 3337.089
8 399 5.131 16 703. 062
9 293 3.793 2281.230
10 182 6.136 6151.534
11 163 4.264 529.691
12 160 2.232 1059.382
13 149 2.165 5621843
14 143 1.182 3340.595
15 143 3.213 3340.630
16 139 2.418 8962.455
MARS Bl I 350069 5.368478 3340.612427
2 14116 3.14159 0
3 9671 5.4788 66812249
4 1472 3.2021 10021.8373
5 426 3.408 13362.450
6 102 0.776 3337.089
7 79 3.72 16 703.06
8 33 3.46 5621.84
9 2 2.48 2281.23
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MARS B2 1 16727 0.60221 3340.61243
2 4987 3.1416 0
3 302 3.559 6681.225
4 26 1.90 13362.45
5 21 0.92 10021.84
6 12 2.24 3337.09
7 8 2.25 16 703.06
MARS B3 1 607 1.981 3340.612
2 43 ] ]
3 14 1.80 6681.22
4 3 3.45 10021.84
MARS B4 1 13 ] 0
2 11 3.46 3340.61
3 1 0.50 6681.22
MARS RO 1 153033488 0 0
2 14184953 3.47971284  3340.61242670
3 660776 3.817834 6681.224853
4 46179 4.15595 10021.83728
5 8110 5.5596 2810.9215
6 7485 1.7724 5621.8429
7 5523 1.3644 2281.2305
8 3825 4.4941 13362.4497
9 2484 4.9255 2942 4634
10 2307 0.0908 2544 .3144
11 1999 5.3606 37337.0893
12 1960 4.7425 3344.1355
13 1167 2.1126 5092.1520
14 1103 5.0091 398.1490
15 992 5.839 6151.534
16 899 4.408 529691
17 807 2.102 1059.382
18 798 3.448 796.298
19 741 1.499 2146.165
20 726 1.245 8432.764
21 692 2.134 8962.455
22 633 0.894 3340595
23 633 2.924 3340630
24 630 1.287 1751.540
25 574 0.829 2914.014
26 526 5.383 3738.761
27 473 5.199 3127.313
28 348 4.832 16 703.062
29 284 2.907 3532.061
30 280 5.257 6 283%.076
31 276 1.218 6254.627
32 275 2.908 1748.016
33 270 3.764 5884.927
34 239 2.037 1194.447
35 234 5.105 5486.778
36 228 3.255 6872.673
37 223 4.199 3149.164
38 219 5.583 191.448
39 208 5.255 3340, 545
40 208 4.846 3340.680
41 186 5.699 6677.708
42 183 5.081 6 684,748
43 179 4.184 3333.499
44 176 5.953 3870.303
45 164 3.799 4136.910
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MARS R1 1 1107433 2.0325052 3340.6124267
2 103176 2.370718 6681.224853
3 12877 0 0
4 10816 2.70888 10021.83728
5 1195 3.0470 13362.449 7
6 439 2,888 2281.230
7 396 3.423 3344.136
8 183 1.584 2544 314
9 136 3.385 16 703.062

10 128 6,043 3337.089
11 128 0.630 1059.382
12 127 1,954 796.298
13 118 2.998 2146.165
14 88 3.42 398,15
15 83 3.86 3738.76
16 76 4.45 6151,53
17 72 2.76 529.69
18 67 2.55 1751.54
19 66 4.41 1748.02
20 58 0.54 1194.45
21 54 0.68 8962.46
22 51 3.73 6684, 75
23 49 5.73 3340.60
24 49 1.48 3340.63
25 48 2.58 3149.16
26 48 2.29 2914.01
27 39 2.32 4136.91

MARS R2 1 44 242 0.47931 3340.61243
2 8138 0.8700 6681,2249
3 1275 1.2259 10021.8373
4 187 1.573 13362.450
5 52 3.14 0
6 41 1.97 3344.14
7 27 1.92 16 703.06
8 18 4.43 2281.23
9 12 4.53 3185.19

10 10 5.39 1059.38
11 10 0.42 796,30

MARS R3 1 1113 5.1499 3340.6124
2 424 5.613 6681,225
3 100 5.997 10021.837
4 20 0.08 13362.45
5 5 3.14 0
6 3 0.43 16 703.06

MARS R4 1 20 3.58 3340.61
2 16 4.05 6681.22
3 6 4.46 10021.84
4 2 4.84 13362.45

JUPITER Lo 1 59 954 691 0 Y]

2 9695899 5.0619179 529.6909651

3 573610 1.444062 7.113547

4 306 389 5.417347 1059.381 930

5 97178 4.14265 632,783 74

6 72903 3.64043 522.57742

7 64 264 3.41145 103.092 77

8 39 806 2.29377 419.48464

9 38858 1.27232 316.39187
10 27 965 1,78455 536.80451
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JUPITER Lo 11 13590 5.77481 1589.07290
{cont.) 12 8769 3.6300 949.1756
13 8246 3.5823 206.1855
14 7368 5.0810 735.8765
15 6263 0.0250 213.2991
16 6114 4.5132 1162.4747
17 5305 4.1863 1052.2684
18 5305 1.3067 14.2271
19 4905 1.3208 110.2063
20 4647 4.6996 3.9322
21 3045 43168 426,598 2
22 2610 1.566 7 846.0828
23 2028 1.0638 3.1814
24 1921 0.9717 639.8973
25 1765 2.1415 1066.4955
26 1723 3.8804 1265.5675
27 1633 3.5820 515.4639
28 1432 4.2968 625,670 2
29 973 4.098 95.979
30 884 2.437 412 371
31 733 6.085 838.969
32 731 3.806 1581.959
33 709 1.293 742,990
34 692 6.134 2118.764
35 614 4,109 1478.867
36 582 4.540 309.278
37 495 3.756 323.505
38 441 2,958 454.909
39 417 1,036 2.448
40 390 4.897 1692 166
41 376 4.703 1368.660
42 341 5.715 533.623
43 330 4.740 0.048
44 262 1.877 0.963
45 261 0.820 380.128
46 257 3.724 199.072
47 244 5.220 728.763
48 235 1,227 909.819
49 220 1.651 543.918
50 207 1.855 525,759
51 202 1.807 1375.774
52 197 5.293 1155, 361
53 175 3.730 942,062
54 175 3.226 1898.351
55 175 5.910 956289
56 158 4.365 1795.258
57 151 3.906 74.782
58 149 4.377 1685.052
59 141 3.136 491.558
60 138 1.318 1169.588
61 131 4.169 1045.155
62 117 2.500 1596.186
63 117 3.389 0.521
64 106 4.554 526.510
JUPITER L1 1 52993480 757 0 0
2 489741 4.220667 529.690 965
3 228919 6.026 475 7.113547
4 27655 4.57266 1059.38193
5 20721 5.459 39 522.57742
6 12106 0.16986 536.804 51
7 6068 4.4242 103.0928
8 5434 3.9848 419.4846
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JUPITER Ll 9 4238 5.8901 14.2271
(cont.) 10 2212 5.2677 206.1855
11 1746 4.9267 1589.0729
12 1296 5.5513 3.1814
13 1173 5.8565 1052,2684
14 1163 0.5145 3.9322
15 1099 5.3070 515.4639
16 1007 0.4648 735.876 5
17 1004 3,1504 426.5982
18 848 5.758 110.206
19 827 4.803 213.299
20 816 0.586 1066.495
21 725 5.518 639.897
22 568 5.989 625.670
23 474 4,132 412.371
24 413 5.737 95.979
25 345 4.242 632.784
26 336 3.732 1162.475
27 234 4.035 949.176
28 234 6.243 309.278
29 199 1.505 838.969
30 195 2,219 323.505
31 187 6.086 742.990
32 184 6.280 543.918
33 171 5.417 199.072
34 131 0.626 728.763
35 115 0.680 846.083
36 115 5.286 2118.764
37 108 4,493 956.289
38 80 5.82 1045.15
39 72 5.34 942,06
40 70 5.97 532.87
41 67 5.73 21.34
42 66 0.13 526.51
43 65 6.09 1581.96
44 59 0.59 1155.36
45 58 0.99 1596.19
46 57 5.97 1169.59
47 57 1.41 533.62
48 55 5.43 10.29
49 52 5.73 117.32
50 52 0.23 1368.66
51 50 6.08 525.76
52 47 3.63 1478.87
53 47 0.51 1265.57
54 40 416 1692.17
55 34 0.10 302,16
56 33 5.04 220.41
57 32 5.37 508.35
58 29 5.42 1272.68
59 29 3.36 4,67
60 29 0.76 88.87
61 25 1.61 831.86
JUPITER L2 1 47234 4,32148 7.11355
2 38 966 0 0
3 30629 2.93021 529.690 97
4 3189 1,0550 522.5774
5 2729 4.8455 536.804 5
6 2723 3.4141 1059.3819
7 1721 4.1873 14,2271
8 383 5.768 419.485
9 378 0.760 515,464
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JUPITER L2 10 367 6.055 103.093
(cont.) 11 337 3.786 3.181
12 308 0.694 206.186
13 218 3.814 1589.073
14 199 5.340 1066.495
15 197 2.484 3.932
16 156 1.406 1052.268
17 146 3.814 639.897
18 142 1.634 426.598
19 130 5.837 412371
20 117 1.414 625.670
21 97 4.03 110.21
22 91 1.1 95.98
23 87 2.52 632.78
24 7 4.64 543.92
25 72 2.22 735.88
2 58 0.83 199.07
27 57 3.12 213.30
28 49 1.67 309.28
29 40 4.02 21.34
30 40 0.62 323.51
31 36 2.33 728.76
32 29 3.61 10.29
33 28 3.24 838.97
34 26 4.50 742.99
35 26 2.51 1162.47
36 25 1.22 1045.15
37 24 3.01 95629
38 19 4.29 532.87
39 18 0.81 508.35
40 17 4.20 2118.76
41 17 1.83 526.51
42 15 5.81 1596.19
43 15 0.68 942.06
44 15 4.00 117.32
45 14 5.95 316.39
46 14 1.80 302.16
47 13 2.52 88.87
48 13 437 1169.59
49 11 4.44 525.76
50 10 1.72 1581.96
51 9 2.18 1155.36
52 9 3.29 220.41
53 9 3.32 831.86
54 8 5.76 846.08
55 8 2.71 533.62
56 7 2.18 1265.57
57 6 0.50 94918
JUPITER L3 1 6502 2.5986 7.1135
2 1357 1.3464 529.6910
3 471 2.475 14.227
4 417 3.245 536.805
5 353 2.974 522.577
6 155 2.076 1059.382
7 87 2.51 515.46
8 44 0 0
9 34 3.83 1066.50
10 28 2.45 206.19
11 24 1.28 412,37
12 23 2.98 543.92
13 20 2.10 639.90

14 20 1.40 419.48
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JUPITER L3 15 19 1.59 103.09
{cont.) 16 17 2.30 21.34
17 17 2.60 1589.07
18 16 3.15 625.67
19 16 3.36 1052.27
20 13 2.76 95.98
21 13 2.54 199.07
22 13 6.27 426.60
23 9 1.76 10.29
24 9 2.27 110.21
25 7 3.43 309.28
26 7 4.04 728.76
27 6 2.52 508.35
28 5 2.91 104515
29 5 5.25 32351
20 4 4.30 88.87
31 4 3.52 302.16
) 4 4.09 735.88
33 3 1.43 956.29
34 3 4.36 1596.19
35 3 1.25 213.30
36 3 5.02 838.97
37 3 224 117.32
38 2 2.90 742.99
39 2 2.36 942.06
JUPITER L4 1 669 0.853 7.114
2 114 3.142 0
3 100 0.743 14,227
4 50 1.65 536.80
5 44 5.82 529.69
6 32 4.86 522.58
7 15 429 515.46
8 9 0.71 1059.38
9 5 1.30 543,92
10 4 2.32 1066.50
11 4 0.48 21.34
12 3 3.00 412.37
13 2 0.40 639.90
14 2 4.2 199.07
15 2 4.91 625.67
16 2 4.26 206.19
17 1 5.26 1052.27
18 1 4.72 95.98
19 1 1.29 1589.07
JUPITER LS 1 50 5.2 7.11
2 16 5.25 14.23
3 4 0.01 536.80
4 2 1.10 522.58
5 1 3.14 (¢}
JUPITER B0 1 2268616 3.5585261 529.690 965 1
2 110090 0 0
3 109972 3.9080953 1059.381 930
4 8101 3.6051 522.5774
5 6438 0.3063 536.804 5
6 6044 4.2588 1589.0729
7 1107 2.9853 1162.4747
8 944 1.675 426.598
9 942 2.936 1052.268
10 894 1.754 7.114
1 836 5.179 103.093



Planets : Periodic Terms 399

JUPITER  BO 12 767 2.155 632.784
{cont.) 13 684 3.678 213,299
14 629 0.643 1066, 495
15 559 0.014 846083
16 532 2.703 110.206
17 464 1.173 949 176
18 431 2.608 419.485
19 351 4.611 2118.764
20 132 4.778 742.990
21 123 3.350 1692.166
22 116 1.387 323,505
23 115 5.049 316.392
24 104 3.701 515.464
25 103 2.319 1478.867
26 102 3.153 1581.959
JUPITER Bl 1 177352 5.701 665 529,690 965
2 3230 5.7794 1059.3819
3 3081 5.4746 522.5774
4 2212 4.7348 536.804 5
5 1694 3.1416 0
6 346 4.746 1052 268
7 234 5.189 1066.495
8 196 6.186 7114
9 150 3.927 1589.073
10 114 3.439 632.784
11 97 2.91 949.18
12 82 5.08 1162.47
13 77 2.51 103.09
14 77 0.61 419.48
15 74 5.50 515.46
16 61 5.45 213 30
17 50 3.95 735.88
18 46 0.54 110.21
19 45 1.90 846.08
20 37 4.70 543.92
21 36 6.11 316.39
22 32 4.92 1581.96
JUPITER B2 1 8094 1.4632 529.6910
2 813 3.1416 0
3 742 0.957 522 577
4 399 2.899 536.805
5 342 1.447 1059.382
6 74 0.41 1052.27
7 46 3.48 1066.50
8 30 1.93 1589.07
9 29 0.99 515.46
10 23 427 7.11
11 14 2.92 543.92
12 12 5.22 632.78
13 1 4.88 94918
14 6 6.21 1045.15
JUPITER B3 1 252 3.381 529,691
2 122 2.733 522_577
3 43 1.04 536.80
4 11 2.31 1052.27
5 8 2.77 515.46
6 7 4.25 1059.38
7 6 1.78 1066.50
8 4 1.13 543,92
9 3 3.14 0



400 ASTRONOMICAL ALGORITHMS

JUPITER B4 1 15 4.53 522,58
2 5 4.47 529.69
3 4 5.44 536.80
4 3 0 0
5 2 4.52 515.46
6 1 4.20 1052,27
JUPITER BS 1 1 0.09 522.58
JUPITER RO 1 520887 429 0 0
2 25209 327 3.491 086 40 529.690 96509
3 610600 3.841154 1059.381930
4 282029 2.574199 632.783 739
5 187647 2.075904 522.577418
6 86 793 0.71001 419.48464
7 72 063 0.21466 536.80451
8 65517 5.979 96 316.39187
9 30135 2.161 32 949.17561
10 29135 1,67759 103.09277
11 23947 0.27458 7.11355
12 23453 3.54023 735.876 51
13 22284 419363 1589.07290
14 13033 2.96043 1162.47470
15 12749 2.71550 1052.268 38
16 9703 1.9067 206.1855
17 9161 44135 213.2991
18 7895 2.4791 426,598 2
19 7058 2.1818 1265.5675
20 6138 6.2642 846.0828
21 5477 5.6573 639.8973
22 4170 2.0161 515.4639
23 4137 2.7222 625.670 2
24 3503 0.5653 1066.4955
25 2617 2.0099 1581.9593
26 2500 4.5518 838.9693
27 2128 6.1275 742,990 1
28 1912 0.856 2 412.3711
29 1611 3.0887 1368.6603
30 1479 2.6803 1478.8666
31 1231 1.8904 323.5054
32 1217 1.8017 110.206 3
33 1015 1.386 7 454.9094
34 999 2.872 309.278
35 961 4,549 2118.764
36 886 4,148 533.623
37 821 1,593 1898.351
38 812 5.941 909.819
39 777 3.677 728.763
40 727 3.988 1155.361
41 655 2,791 1685.052
42 654 3.382 1692.166
43 621 4.823 956.289
44 615 2.276 942062
45 562 0.081 543.918
46 542 0.284 525.759
JUPITER R1 1 1271802 2.6493751 529.6909651
2 61662 3.00076 1059.38193
3 53444 3.89718 522.57742
4 41390 0 0
5 31185 4.88277 536.804 51
6 11847 2.41330 419 48464
7 9166 4.7598 7.1135



Planets : Periodic Terms 401

JUPITER R1 8 3404 3.3469 1589.0729
(cont.) 9 3203 5.2108 735.8765
10 3176 2.7930 103.0928
11 2806 3.7422 515,4639
12 2677 4.3305 1052.2684
13 2600 3.6344 206.1855
14 2412 1.4695 426.5982
15 2101 3.9276 639.8973
16 1646 5.3095 1066.4955
17 1641 4.4163 625.670 2
18 1050 3.1611 213.2991
19 1025 2.5543 412.3711
20 806 2.678 632.784
21 741 2,171 1162.475
22 677 6.250 838.969
23 567 4.577 742.990
24 485 2.469 949.176
25 469 4.710 543.918
26 445 0.403 323.505
27 416 5.368 728.763
28 402 4.605 309.278
29 347 4.681 14.227
30 338 3.168 956.289
31 261 5.343 846.083
32 247 3.923 942.062
33 220 4.842 1 368.660
34 203 5.600 1155,.361
35 200 4.439 1045.155
36 197 3.706 2118.764
37 196 3.759 199.072
38 184 4.265 95.979
39 180 4.402 532.872
40 170 4.846 526.510
41 146 6.130 533.623
42 133 1,322 110.206
43 132 4.512 525.759
JUPITER R2 1 79 645 1.35866 529.69097
2 8252 5.7777 522.5774
3 7030 3.2748 536.8045
4 5314 1.8384 1059.3819
5 1861 2.9768 7.1135
6 964 5.480 515.464
7 836 4.199 419.485
8 498 3.142 0
9 427 2,228 639.897
10 406 3.783 1 066,495
11 377 2,242 1589.073
12 363 5.368 206.186
13 342 6.099 1052.268
14 339 6.127 625.670
15 333 0.003 426.598
16 280 4.262 412.371
17 257 0.963 632.784
18 230 0.705 735.877
19 201 3.069 543.918
20 200 4.429 103.093
21 139 2,932 14.227
22 114 0.787 728.763
23 95 1.70 838.97
24 86 5.14 323.51
25 83 .06 309.28

0
26 80 2.98 742.99



402 ASTRONOMICAL ALGORITHMS

JUPITER R2 27 75 1.60 956.29
(cont.) 28 70 1,51 213.30
29 67 5.47 199.07
30 62 6.10 1045.15
31 56 0.96 1162.47
32 52 5.58 942,06
33 50 2.72 532.87
34 45 5.62 508.35
35 44 0.27 526.51
36 40 5.95 95.98
JUPITER R3 1 3519 6.0580 529.6910
2 1073 1.6732 536.804 5
3 916 1.413 522,577
4 342 0.523 1059.382
5 255 1.196 7.114
6 222 0.952 515.464
7 90 3.14 0
8 69 2.27 1066.50
9 58 1.41 543.92
10 58 0.53 639,90
11 51 5.98 412.37
12 47 1.58 625.67
13 43 6.12 419.48
14 37 1.18 14.23
15 34 1.67 1052.27
16 34 0.85 206.19
17 31 1.04 1589.07
18 30 4.63 426.60
19 21 2.50 728.76
20 15 0.89 199.07
21 14 0.96 508.35
22 13 1,50 1045.15
23 12 2.61 735.88
24 12 3.56 323.51
25 11 1.79 309.28
26 11 6.28 956.29
27 10 6.26 103.09
28 9 3.45 838.97
JUPITER R4 1 129 0.084 536.805
2 113 4.249 529.691
3 83 3.30 522 58
4 38 2.73 515.46
5 27 5.69 7.11
6 18 5.40 1059.38
7 13 6.02 543.92
8 9 0.77 1066.50
9 8 5.68 14.23
10 7 1.43 412.37
11 6 5.12 639.90
12 5 3.34 625.67
13 3 3.40 1052.27
14 3 4.16 728.76
15 3 2.90 426.60
JUPITER RS 1 11 4.75 536.80
2 4 5.92 522.58
3 2 5.57 515.46
4 2 4.30 543.92
5 2 3.69 7.11
6 2 4.13 1059.38
7 2 5.49 1066.50



Planets : Periodic Terms 403

SATURN LO 1 87401 354 0 0
2 11107660 3.962050 90 213.299095 44
3 1414151 4,5858152 7.1135470
4 398379 0.521120 206.185 548
5 350 769 3.303299 426.598 191
6 206 816 0.246 584 103.092 774
7 79271 3.84007 220.41264
8 23990 4.669 77 110.206 32
9 16574 0.43719 419.48464
10 15820 0.93809 632.78374
11 15054 2.71670 639.89729
12 14907 5.769 03 316.391 87
13 14610 1.56519 2.93215
14 13160 4.44891 14.22709
15 13005 5.98119 11.04570
16 10725 3.12940 202,25340
17 6126 1.7633 277.0350
18 5863 0.2366 529.6910
19 5228 4.2078 3.1814
20 5020 3.1779 433.7117
21 4593 0.6198 199.0720
22 4006 2.2448 63.7359
23 3874 3.2228 138.5175
24 3269 0.7749 949.1756
25 2954 0.9828 95 9792
26 2461 2 0316 735.8765
27 1758 3.2658 522.5774
28 1640 5.5050 846.0828
29 1581 4.3727 309.2783
30 1391 4.0233 323.5054
31 1124 2.8373 415.5525
32 1087 41834 2.4477
33 1017 3.7170 227.5262
34 957 0.507 1265.567
35 853 3.421 175.166
36 849 3.191 209.367
37 789 5.007 0.263
38 749 2.144 853.196
39 744 5.253 224.345
40 687 1.747 1052.268
41 654 1.599 0.048
42 634 2.299 412,371
43 625 0.970 210.118
44 580 3.093 74.782
45 546 2.127 350.332
46 543 1.518 9.561
47 530 4.449 117.320
48 478 2.965 137.033
49 474 5.475 742.990
50 452 1.044 490.334
51 449 1.290 127.472
52 372 2.278 217.231
53 355 3.013 838.969
54 347 1.539 340.771
55 343 0.246 0.521
56 330 0.247 1581.959
57 322 0.961 203.738
58 322 2.572 647.011
59 309 3.495 216 .480
60 287 2.370 351.817
61 278 0.400 211.815
62 249 1.470 1368.660

63 227 4,910 12,530



404 ASTRONOMICAL ALGORITHMS

SATURN L0 64 220 4.204 200.769
(cont.) 65 209 1.345 625.670
66 208 0.483 1162.475
67 208 1,283 39.357
68 204 6.011 265.989
69 186 3.503 149,563
70 184 0.973 4193
7 182 5.491 2.921
72 174 1.863 0.751
73 165 0.440 5.417
74 149 5.736 52.690
75 148 1.535 5.629
76 146 6.231 195,140
77 140 4.295 21,341
78 131 4.068 10,295
79 126 6.277 1898.351
80 122 1.976 4.666
81 118 5.341 554.070
82 117 2,679 1155361
83 114 5.504 1059382
84 112 1.105 191,208
85 110 0.166 1.484
86 109 3.438 536805
87 107 4.012 956.289
88 104 2.192 88.866
89 103 1.197 1685.052
90 101 4.965 269.921
SATURN L1 1 21354 295 596 0 0
2 1296 855 1.8282054 213.299095 4
3 564 348 2.885001 7.113547
4 107679 2.277699 206.185 548
5 98323 1.08070 426.59819
6 40255 2.041 28 220.412 64
7 19942 1.27955 103.092 77
8 10512 2.74880 14.22709
9 6939 0.4049 639.8973
10 4803 2.4419 419.4846
1 4056 2.9217 110,206 3
12 3769 3.6497 3.9522
13 3385 2.4169 3.1814
14 3302 1.2626 433 7117
15 5071 2.3274 199.0720
16 1953 3.5639 11.0457
17 1249 2.6280 95.979 2
18 922 1.961 227.526
19 706 4.417 529.691
20 650 6.174 202.253
21 628 6.111 309.278
22 487 6.040 853.196
23 479 4.988 522,577
24 468 4.617 63.736
25 417 2.117 323,505
26 408 1.299 209.367
27 352 2.317 632.784
28 344 3.959 412,371
29 340 3.634 316.392
30 336 3.772 735.877
31 332 2.861 210,118
32 289 2.733 117.320
33 281 5.744 2.448
34 266 0.543 647.011



Planets : Periodic Terms 405

SATURN L1 35 230 1.644 216.480
(cont.) 36 192 2.965 224,345
37 173 4.077 846.083
38 167 2.597 21.341
39 136 2.286 10.295
40 131 3.441 742.990
41 128 4.095 217.231
42 109 6.161 415.552
43 98 4.73 838.97
44 94 3.48 1052.27
45 92 3.95 88.87
46 87 1.22 440.83
47 83 3.11 625.67
48 78 6.24 302.16
49 67 0.29 4.67
50 66 5.65 9.56
51 62 4.29 127.47
52 62 1.83 195.14
53 58 2.48 191.96
54 57 5.02 137.03
55 55 0.28 74.78
56 54 5.13 490.33
57 51 1.46 536.80
58 47 1.18 149.56
59 47 5.15 515.46
60 46 2.23 956.29
61 44 2,71 5.42
62 40 0.41 269 92
63 40 3.89 728.76
64 38 0.65 422.67
65 38 2,53 12,53
66 37 3.78 2.92
67 35 6.08 5.63
68 34 3.21 1368.66
69 33 4.64 277.03
70 33 5.43 1066.50
71 33 0.30 351.82
72 32 4.39 1155.36
73 31 2.43 52.69
74 30 2.84 203.00
75 30 6.19 284.15
76 30 3.39 1059.38
77 29 2.03 330.62
78 28 2.74 265.99
79 26 4.51 340.77
SATURN L2 1 116441 1.179879 7.113547
2 91921 0.074 25 213.29910
3 90 592 0 0
4 15277 4.06492 206.18555
5 10631 0.25778 220.41264
6 10605 5.409 64 426.59819
7 4265 1.0460 14.2271
8 1216 2.9186 103.0928
9 1165 4.6094 639.8973
10 1082 5.6913 433.7117
11 1045 4.0421 199.0720
12 1020 0.6337 3.1814
13 634 4.388 419.485
14 549 5.573 3.932
15 457 1.268 110.206

16 425 0.209 227.526



406 ASTRONOMICAL ALGORITHMS

SATURN L2 17 274 4.288 95.979
(cont.) 18 162 1.381 11.046
19 129 1.566 309.278
20 117 3.881 853.196
21 105 4.900 647.011
22 101 0.893 21.341
23 96 2.91 316.39
24 95 5.63 412.37
25 85 5.73 209.37
26 83 6.05 216.48
27 82 1.02 117.32
28 75 4.76 210.12
29 67 0.46 522.58
30 66 0.48 10.29
31 64 0.35 323.51
32 61 4.88 632.78
33 53 2.75 529.69
34 46 5.69 440.83
35 45 1.67 202,25
36 42 5.71 88.87
37 32 0.07 63.74
38 32 1.67 302.16
39 31 4.16 191.96
40 27 0.83 224 .34
41 25 5.66 735.88
42 20 5.94 217.23
43 18 4.90 625.67
44 17 1.63 742.99
45 16 0.58 515.46
46 14 0.21 838.97
47 14 3.76 195.14
48 12 4,72 203.00
49 12 0.13 234 64
50 12 3.12 846.08
51 11 5.92 536.80
52 11 5.60 728.76
53 11 3.20 1066.50
54 10 4,99 422.67
55 10 0.26 330.62
56 10 4.15 860.31
57 9 0.46 956.29
58 8 2.14 269.92
59 8 5.25 429.78
60 8 4.03 9.56
61 7 5.40 1052.27
62 6 4.46 284,15
63 6 5.93 405.26
SATURN L3 1 16 039 5.73945 7.11355
2 4250 4.5854 213.2991
3 1907 4.7608 220.4126
4 1466 5.9133 206.1855
5 1162 5.6197 14,2271
6 1067 3.6082 426.5982
7 239 3.861 433,712
8 237 5.768 199.072
9 166 5.116 3.181
10 151 2.736 639.897
11 131 4.743 227,526
12 63 0.23 419.48
13 62 4.74 103.09
14 40 5.47 21.34



Planets : Periodic Terms 407

SATURN L3 1§ 40 5.96 95.98

(cont.) 16 39 5.83 11021
17 28 3.01 647.01
18 25 0.99 3.93
19 19 1.92 853.20
20 18 4.97 10.29
21 18 1.03 412.37
22 18 4.20 216.48
23 18 3.32 309,28
24 16 3.90 440.83
25 16 5.62 117.32
26 13 1.18 88.87
27 11 5.58 11.05
28 1 5.93 191.96
29 10 3.95 209.37
30 9 3.39 302.16
31 8 4.88 32351
32 7 0.38 632.78
33 6 2.25 522.58
34 6 1.06 210.12
35 5 4.64 234.64
2% 4 3.14 0
37 4 2.31 515 46
38 3 2.20 860.31
39 3 0.59 52969
40 3 4.93 224.34
41 3 0.42 625.67
42 2 4.77 330.62
43 2 3.35 429.78
44 2 3.20 202,25
45 2 1.19 1066.50
46 2 1.35 40526
47 2 4.16 223.59
48 2 3.07 654.12

SATURN L4 1 1662 3.9983 7 1135
2 257 2.984 220.413
3 236 3.902 14.227
4 149 2.741 213.299
5 114 3.142 0
6 110 1.515 206.186
7 68 1.72 426 .60
8 40 2.05 433.71
9 38 1.24 199.07
10 31 3.01 227.53
1 15 0.83 639.90
12 9 3.71 21.34
13 6 2.42 419 48
14 6 1.16 647.01
15 4 1.45 95.98
16 4 2.12 440 .83
17 3 4.09 110.21
18 3 2.77 412.37
19 3 3.01 88.87
20 3 0.00 853.20
21 3 0.39 103.09
22 2 3.78 117.32
23 2 2.83 234,64
24 2 5.08 309.28
25 2 2.24 216,48
26 2 5.19 302,16
27 1 1.55 191.96



408 ASTRONOMICAL ALGORITHMS

SATURN LS 1 124 2.259 7.114
2 34 2.16 14,23
3 28 1,20 220.41
4 6 1.22 227.53
5 5 0.24 433.71
6 4 6.23 426,60
7 3 2.97 199.07
8 3 4.29 206.19
9 2 6.25 213.30
10 1 5.28 639.90
11 1 0.24 440.83
12 1 3.14 0
SATURN BO 1 4330678 3,6028443 213,299 0954
2 240348 2.8521385 426.598 191
3 84746 0 0
4 34116 0.57297 206,185 55
5 30863 3.48442 220.41264
6 14734 2.11847 639.89729
7 9917 5.7900 419.4846
8 6994 4.7360 7.113%
9 4808 54331 316.3919
10 4788 4.9651 110.2063
11 3432 2.7326 433.7117
12 1506 6.0130 103.0928
13 1060 5.6310 529.6910
14 969 5.204 632.784
15 942 1.396 853.196
16 708 3.803 323.505
17 552 5.131 202.253
18 400 3.359 227.526
19 319 3.626 209.367
20 316 1.997 647.011
21 314 0.465 217.231
22 284 4.886 224.345
23 236 2,139 11.046
24 215 5.950 846.083
25 209 2,120 415.552
26 207 0.730 199.072
27 179 2.954 63.736
28 141 0.644 490,334
29 139 4.595 14,227
30 139 1.998 735.877
31 135 5.245 742.990
32 122 3.115 522.577
33 116 3.109 216.480
34 114 0.963 210.118
SATURN Bl 1 397555 5.332900 213.299 095
2 49479 3.14159 0
3 18572 6.09919 426.598 19
4 14801 2.30586 206.18555
5 9644 1.6967 220.4126
6 3757 1.2543 419.4846
7 2717 5.9117 639.8973
8 1455 0.8516 433.7117
9 1291 2.9177 7.1135
10 853 0.436 316.392
11 298 0.919 632.784
12 292 5.316 853.196
13 284 1.619 227.526
14 275 3.889 103.093
15 172 0.052 647.011



Planets : Periodic Terms 409

SATURN Bl 16 166 2.444 199.072
(cont.) 17 158 5.209 110.206
18 128 1.207 529.691
19 110 2.457 217.231
20 82 2.76 210.12
21 81 2.86 14,23
22 69 1.66 202.25
23 65 1.26 216 .48
24 61 1.25 209.37
25 59 1.82 323.51
26 46 0.82 440 .83
27 36 1.82 224 .34
28 34 2.84 117.32
29 33 1.31 412 .37
30 32 1.19 846.08
31 27 4.65 1066.50
32 27 4.44 11.05
SATURN B2 1 20630 0.50482 213.29910
2 3720 3.9983 206.1855
3 1627 6.1819 220.4126
4 1346 0 0
5 706 3.039 419.485
6 365 - 5.099 426 598
7 330 5.279 433.712
8 219 3.828 639.897
2 139 1,043 7.114
10 104 6.157 227.526
11 93 1.98 316.39
12 71 4.15 199.07
13 52 2.88 632.78
14 49 4.43 647.01
15 41 3.16 853.20
16 29 4.53 210.12
17 24 112 14,23
18 21 4 3% 217.23
19 20 5 31 440.83
20 18 0.85 110.21
21 17 5.68 216 .48
22 16 4.26 103.09
23 14 3.00 412.37
24 12 2.53 529.69
25 8 3.32 202.25
26 7 5.56 209.37
27 7 029 323.51
28 6 1.16 117.32
29 6 3.61 860.31
SATURN B3 1 666 1.990 213.299
2 632 5.698 206.186
3 398 0 0
4 188 4.338 220.413
5 92 4.84 419.48
6 52 3.42 433.71
7 42 2.38 426.60
8 26 4.40 227.53
9 21 5.85 199.07
10 18 1.99 639.90
11 11 5.37 7.11
12 10 2.55 647.01
13 7 3.46 316.39
14 6 4.80 632.78
15 6 0.02 210.12



410 ASTRONOMICAL ALGORITHMS

SATURN B3 16 6 3,52 440.83
(cont.) 17 5 5.64 14,23
18 5 1.22 853.20
19 4 4.71 412.37
20 3 0.63 103.09
21 2 3.72 216,48
SATURN B4 1 80 1.12 206.19
2 32 3.12 213.30
3 17 2.48 220.41
4 12 3.14 0
5 9 0 38 419.48
6 6 1.56 433,71
7 5 2.63 227.53
8 5 1.28 199.07
9 1 1.43 426,60
10 1 0.67 647.01
11 1 1.72 440.83
12 1 6.18 639.90
SATURN BS 1 8 2.82 206.19
2 1 0.51 220.41
SATURN RO 1 955758136 0 0
2 52921 382 2 39226220 213,299 095 44
3 1873680 5 2354961 206,185548 4
4 1464664 1.6476305 426.5981909
5 821891 5.935 200 316.391870
6 547 507 5.015326 103.092774
7 371684 2,271148 220.412642
8 361778 3.139043 7.113 547
9 140618 5.704067 632.783739
10 108975 3.293136 110,206 321
11 69007 5.941 00 419.484 64
12 61053 0.940 38 639.837 29
13 48913 1 55733 202.25340
14 34144 0.19519 277.03499
15 32402 5.47085 949.17561
16 20937 0 46349 735.876 51
17 20839 1 52103 433,711 74
18 20747 5 33256 199.072 60
19 15298 3.05944 529.69097
20 14296 2 60434 323.50542
21 12884 1 64892 138.517 50
22 11993 5.98051 846.082 83
23 11380 1 73106 522.577 42
24 9796 52048 1265.5675
25 7753 5.8519 95.9792
26 6771 3.0043 14,2271
27 6 466 0.1773 1052.2684
28 5850 1.4552 415,552 5
29 5307 04,5974 63,7359
30 4696 2.1492 227.526 2
31 4044 1.6401 209.366 9
32 3688 0.7802 412.3711
33 3461 1.8509 175.166 1
34 3420 4,9455 1581.9593
35 3401 0.5539 350.3321
36 3376 3.6953 224,344 8
37 2976 5.6847 210.1177
38 2885 1.3876 838.969 3
39 2881 0.1796 853.196 4

40 2508 3.5385 742.9901



Planets : Periodic Terms 411

SATURN RO 41 2448 6.1841 1368.6603
(cont.) 42 2406 2.9656 117.3199
43 2174 0.0151 340.7709
44 2024 5.0541 11,0457
SATURN R1 1 6182981 0.2584352 213.2990954
2 506 578 0.711147 206,185 548
3 341394 5.796 358 426.598 191
4 188491 0.472157 220.412642
5 186 262 3 141593 0
6 143 891 1 407449 7.113547
7 49 621 6.01744 103.09277
8 20928 5.09246 639.89729
9 19953 1.17560 419.484 64
10 18 840 1.60820 110.206 32
11 13877 0.758 86 199.07200
12 12893 5.943 30 433.71174
13 5397 1.2885 14,2271
14 4869 0.8679 323.5054
15 4247 0.3930 227.5262
16 3252 1.2585 95.9792
17 3081 3.4366 522 5774
18 2909 4.6068 202.2534
19 2856 2 1673 735.876 5
20 1988 2.4505 412.3711
21 1941 6 0239 209.3669
22 1581 1.2919 210.1177
23 1340 4.3080 853.1964
24 1316 1.2530 117.3199
25 1203 1.8665 316.3919
26 1091 0.0753 216.4805
27 966 0.480 632.784
28 954 5.152 647.011
29 898 0.983 529.691
30 882 1 885 1052.268
31 874 1.402 224.345
32 785 3.064 838.969
33 740 1 382 625.670
34 658 4.144 309.278
35 650 1.725 742.990
36 613 3.033 63.736
37 599 2.549 217.231
38 503 2.130 3.932
SATURN R2 1 436 902 4.786 717 213.299 095
2 71923 2.50070 206,185 55
3 49767 4.97168 220.41264
4 43221 3.869 40 426.59819
5 29 646 5.96310 7.11355
6 4721 2.4753 199.0720
7 4142 4,106 7 433.7117
8 3789 3.0977 639.8973
9 2964 1.3721 103.0928
10 2556 2.8507 419.4846
11 2327 0 0
12 2208 6.2759 110.2063
13 2188 5.8555 14.2271
14 1957 4.9245 227.526 2
15 924 5.464 323.505
16 706 2.971 95.979
17 546 4,129 412,371
18 431 5.178 522.577

19 405 4,173 209.367



412 ASTRONOMICAL ALGORITHMS

SATURN R2 20 391 4.481 216.480
(cont.) 21 374 5.834 117.320
22 261 3.277 647.011
23 356 3.192 210.118
24 326 2.269 853.196
25 207 4.022 735.877
26 204 0.088 202.253
27 180 3.597 632.784
28 178 4.097 440.825
29 154 3.135 625.670
30 148 0.136 302.165
31 133 2.594 191.958
32 132 5.933 309.278
SATURN R3 1 20315 3.02187 213,299 10
2 8924 3.1914 220.4126
3 6909 4.3517 206.1855
4 4087 4.2241 7.1135
5 3879 2.0106 4265982
6 1071 4.2036 199.0720
7 907 2.283 433,712
8 606 3.175 227.526
9 597 4.135 14,227
10 483 1.173 639.897
11 393 0 0
12 229 4.698 419,485
13 188 4.590 110.206
14 150 3.202 103.093
15 121 3.768 323,505
16 102 4.710 95.979
17 101 5.819 412,371
18 93 1.44 647.01
19 84 2.63 216.48
20 73 4.15 117.32
21 62 2.31 440.83
22 55 0 31 853.20
23 50 2.39 209.37
24 45 437 191.96
25 41 0.69 522.58
26 40 1.84 302.16
27 38 5.94 88.87
28 32 4.0 21,34
SATURN R4 1 1202 1.4150 220.4126
2 708 1.162 213,299
3 516 6.240 206.186
4 427 2 469 7.114
5 268 0187 426.598
6 170 5.959 199.072
7 150 0 480 433,712
8 145 1.442 227.526
9 121 2.405 14,227
10 47 5.57 639.90
11 19 5.86 647.01
12 17 0.53 440.83
13 16 2.90 110.21
14 15 0.30 419.48
15 14 1.30 412.37
16 13 2.09 323,51
17 11 0.22 95.98
18 11 2.46 117.32
19 10 314 0
20 9 1.56 88.87



Planets : Periodic Terms 413

SATURN R4 21 9 2.28 21,34
(cont.) 22 9 0.68 216.48
23 8 1.27 234.64
SATURN R5 1 129 5,913 220.413
2 32 0.69 7.11
3 27 5.91 227.55
4 20 4.95 433.71
5 20 0.67 14.23
6 14 2.67 206.19
7 14 1.46 199.07
8 13 4.59 426.60
9 7 4.63 213.30
10 5 3.61 639.90
11 4 4.90 44083
12 3 4.07 647.01
13 3 4.66 191.96
14 3 0.49 323.51
15 3 3.18 419.48
16 2 3.70 88.87
17 2 3.32 95.98
18 2 0.56 117.52
URANUS L0 1 548129 294 0 0
2 9260 408 0.891 064 2 74.7815986
3 1504 248 3.6271926 1.4844727
4 365982 1.899622 73.297126
5 272328 3.358 237 149.563 197
6 70328 5.39254 63.73590
7 68893 6.09292 76.266 07
8 61999 2.26952 2.96895
9 61951 2.85099 11.04570
10 26469 3.141 52 71.81265
11 25711 6.113 80 454 909 37
12 21079 4.36059 148 078 72
13 17819 1.74437 36 64856
14 14613 4.73732 3.95215
15 11163 5.826 82 224 34480
16 10998 0.488 65 138.51750
17 9527 2.9552 35.1641
18 7546 5.2363 109.9457
19 4220 3.2333 70.8494
20 4052 2.2775 151.0477
21 3490 5.4831 146 5943
22 3355 1.0655 4.4534
23 3144 4.7520 77.7505
24 2927 4.6290 9.5612
25 2922 5.3524 85.8273
26 2273 4.3660 70.3282
27 2149 0.6075 38.1330
28 2051 1.5177 0.1119
29 1992 4.9244 277.0350
30 1667 3.6274 380.1278
31 1533 2.5859 52.6902
32 1376 2.0428 65.2204
33 1372 4.1964 111.4302
34 1284 3.1135 202.2534
35 1282 0.5427 222.8603
26 1244 0.916 1 2.4477
37 1221 0.1990 108.461 2
38 1151 4.1790 33.6796
39 1150 0.9334 3.1814
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URANUS Lo 40 1090 1.7750 12.5302
{cont.) 41 1072 0.2356 62.2514
42 946 1,192 127.472
43 708 5.183 213.299
44 653 0.966 78.714
45 628 0.182 984.600
46 607 5.432 529.691
47 559 3.358 0.521
48 524 2.013 299.126
49 483 2.106 0.963
50 471 1.407 184.727
51 467 0.415 145.110
52 434 5.521 183.243
53 405 5.987 8.077
54 399 0.338 415.552
55 396 5.870 351,817
56 379 2.350 56.622
57 310 5.833 145 631
58 300 5.644 22.091
59 294 5.839 39.618
60 252 1.637 221.376
61 249 4.746 225.829
62 239 2.350 137.033
63 224 0.516 84,343
64 223 2.843 0.261
65 220 1.922 67,668
66 217 6.142 5.938
67 216 4.778 340,771
68 208 5.580 68.844
69 202 1,297 0.048
70 199 0.956 152.532
71 194 1888 456,394
72 193 0.916 453,425
73 187 1.319 0.160
74 182 3.536 79.235
75 173 1.539 160.609
76 172 5.680 219.891
77 170 3.677 5.417
78 169 5 879 18.159
79 165 1 424 106.977
80 163 3.050 112.915
81 158 0.738 54.175
82 147 1.263 59.804
83 143 1.300 35.425
84 139 5.386 32.195
85 139 4.260 909.819
86 124 1.374 7.114
87 110 2.027 554.070
88 109 5.706 77.963
89 104 5.028 0.751
90 104 1.458 24.379
91 103 0 681 14.978
URANUS L1 1 7502543122 0 0
2 154458 5.242017 74.781 599
3 24 456 1.71256 1.484 47
4 9258 0.4284 11,0457
5 8266 1.5022 63.7359
6 7842 1.3198 149.5632
7 3899 0.4648 3.9322
8 2284 4.1737 76.2661
9 1927 0.5301 2.9689
10 1233 1.5863 70.8494



Planets : Periodic Terms
URANUS L1 11 791 5.436 3.181
(cont.) 12 767 1.996 73.297
13 482 2,984 85.827
14 450 4,138 138.517
15 446 3.723 224,345
16 427 4.731 71.813
17 354 2,583 148.079
18 348 2.454 9.561
19 317 5.579 52.690
20 206 2.363 2.448
21 189 4,202 56.622
22 184 0.284 151.048
23 180 5.684 12.530
24 171 3.001 78.714
25 158 2.909 0.963
26 155 5.591 4.453
27 154 4 652 35.164
28 152 2.942 77.751
29 143 2.590 62,251
30 121 4.148 127.472
31 116 3.732 65.220
32 102 4,188 145.631
33 102 6.034 0.112
34 88 3.99 18.16
35 88 6.16 202.25
36 81 2.64 22.09
37 72 6.05 70.33
38 69 4,05 77.96
39 59 3.70 67.67
40 47 3.54 351.82
41 44 5.91 7.11
42 43 5.72 5.42
43 39 4.92 222 .86
44 36 5.90 33.68
45 36 3.29 8 08
46 36 3.33 71.60
47 35 5.08 38.13
48 31 5.62 984,60
49 31 5.50 59.80
50 31 5.46 160.61
51 30 1.66 447.80
52 29 1.15 462.02
53 29 4.52 84,34
54 27 5 54 131.40
55 27 6.15 299.13
56 26 4.99 137.03
57 25 5.74 380.13
URANUS L2 1 53033 0 0
2 2358 2.2601 74.7816
3 769 4,526 11.046
4 552 3.258 63.736
5 542 2.276 3.932
6 529 4,923 1.484
7 258 3.691 3.181
8 239 5.858 149,563
9 182 6.218 70.849
10 54 1.44 76.27
11 49 6.03 56.62
12 45 3.91 2.45
13 45 0.81 85.83
14 38 1.78 52.69
15 37 4.46 2.97
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URANUS L2 16 33 0.86 9.56
(cont.) 17 29 5.10 73.30
18 24 2.11 18.16
19 22 5.99 138,52
20 22 4.82 78.71
21 21 2.40 77.96
22 21 2.17 224.34
23 17 2.54 145.63
24 17 3.47 12,53
25 12 0.02 22.09
26 11 0.08 127.47
27 10 5.16 71.60
28 10 4.46 62.25
29 9 4.26 7.11
30 8 5.50 67.67
31 7 1.25 5.42
32 6 3.36 447.80
33 6 5.45 65,22
34 6 4.52 151.05
35 6 5.73 462,02
URANUS L3 1 121 0.024 74.782
2 68 4.12 3.93
3 53 2.39 11.05
4 46 0 0
5 45 2.04 3,18
6 44 2.96 1.48
7 25 4 89 63.74
8 21 4.55 70.85
9 20 2 31 149,56
10 9 1.58 56.62
11 4 0.23 18,16
12 4 5.39 76.27
13 4 0.95 77.96
14 3 4.98 85.83
15 3 4.13 52.69
16 3 0.37 78.71
17 2 0.86 145,63
18 2 5.66 9.56
URANUS L4 1 114 3.142 ¢
2 6 4 58 74.78
3 3 0.35 11,05
4 1 3.42 56.62
URANUS BO 1 1346 278 2.6187781 74.781 5986
2 62 341 5.08111 149,563 20
3 61601 3.14159 ¢
4 9964 1.6160 76,2661
5 9926 0.576 3 73.2971
6 3259 12612 224.3448
7 2972 2,2437 1.,4845
8 2010 6.0555 148.078 7
9 1522 0.2796 63.7359
10 924 4.038 151.048
11 761 6.140 71.813
12 522 3.321 138.517
13 463 0.743 85,827
14 437 3.381 529.691
15 435 0.341 77.751
16 431 3.554 213,299
17 420 5.213 11,046
18 245 0.788 2,969



Planets : Periodic Terms 417

URANUS B0 19 233 2.257 222,860
(cont ) 20 216 1.591 38.133

21 180 3.725 299,126

22 175 1.236 146.594

23 174 1.937 380.128

24 160 5.336 111.430

25 144 5.962 35.164

26 116 5.739 70.849

27 106 0.941 70.328

28 102 2619 78.714
URANUS Bl 1 206 366 4.123943 74.781 599

2 8563 0.3382 149.563 2

3 1726 2’1219 73.2971

4 1374 o 0

5 1369 3.0686 76.266 1

6 451 3.777 1.484

7 400 2.848 224,345

8 307 1.255 148.079

9 154 3 786 63.736

10 112 5.573 151,048

11 111 5.329 138.517

12 83 3.59 71.81

13 56 340 85.83

14 54 1.70 77.75

15 42 1.21 11 05

16 41 4.45 78.71

17 32 3.77 222,86

18 30 2.56 2.97

19 27 5.34 213.30

20 26 0.42 380.13
URANUS B2 1 9212 5.800 4 74.7816

2 557 0 0

3 286 2.177 149.563

4 95 3 84 73.30

5 45 4.88 76.27

6 20 5.46 1.48

7 15 0.88 138 52

8 14 2'85 148.08

9 14 5.07 63.74

10 10 5.00 224,34

11 8 6.27 78.71
URANUS B3 1 268 1.251 74,782

2 11 3.14 0

3 6 4.01 149.56

4 3 5.78 73.30
URANUS B4 1 6 2.85 74.78
URANUS RO 1 1921264848 0 0

2 88784 984 5.603 775 27 74.781 598 57

3 3440836 0.3283610 73.2971259

4 2055653 1.7829517 149.5631971

5 649 322 4.522473 76.266071

6 602248 3.860038 63.735 898

7 496 404 1.401 399 454.909367

8 338526 1.580 027 138.517497

9 243 508 1.570 866 71.812653

10 190522 1.998 094 1.484473

1 161 858 2.791 379 148,078 724

12 143706 1.383686 11.045 700
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URANUS RO 13 93192 0.17437 36.648 56
(cont.) 14 89806 3.661 05 109.945 69
15 71424 4.24509 224.344 80
16 46677 1.39977 35.164 09
17 39026 3.36235 277.03499
18 39010 1.66971 70.84945
19 36 755 3.88649 146.594 25
20 30349 0.70100 151.04767
21 29156 3.18056 77.750 54
22 25 786 3.78538 85.827 30
23 25620 5.256 56 380.12777
24 22637 0.72519 529.690 97
25 20473 2.796 40 70.328 18
26 20472 1.55589 202.25340
27 17901 0.554 55 2.96895
28 15503 5.35405 38.13304
29 14702 4.904 34 108.46122
30 12897 2.621 54 111.43016
31 12328 5 960 39 127.471 80
32 11959 1,75044 984.600 33
33 11853 0.99343 52.69020
34 11696 3.29826 3.93215
35 11495 0.43774 65.22037
36 10793 1.42105 213.29910
37 9111 4.9964 62.2514
38 8421 5.2535 222.8603
39 8402 5.0388 415.5525
40 7449 0.7949 351.8166
41 7329 3,9728 183,2428
42 6046 5.6796 78,7138
43 5524 3.1150 9.5612
44 5445 5.1058 145.1098
45 5238 2.6296 33.6796
46 4079 3,2206 340.7709
47 3919 4.2502 39.6175
48 3802 6.1099 184.7273
49 37861 3.4584 456.393 8
50 3687 2.4872 453.4249
51 3102 4.1403 219.8914
52 2963 0.8298 56.6224
53 2942 0.4239 299.1264
54 2940 2.1464 137.0330
55 2938 3.6766 140.0020
56 2865 0.3100 12.5302
57 2538 4.8546 131.4039
58 2364 0.4425 554.0700
59 2183 2.9404 305,346 2
URANUS R1 1 1479896 3.6720571 74.7815986
2 71212 6.226 01 63.73590
3 68 627 6.13411 149.563 20
4 24060 3,14159 0
5 21468 2.60177 76.266 07
6 20857 5.246 25 11.045 70
7 11405 0.01848 70.849 45
8 7497 0.4236 73.2971
9 4244 1.4169 85.8273
10 3927 3.1551 71.8127
11 3578 2.3116 224.3448
12 3506 2.5835 138.5175
13 3229 5.2550 3.9322
14 3060 0.1532 1.4845

15 2564 0.9808 148.078 7



Planets : Periodic Terms 419

URANUS R1 16 2429 3.9944 52.6902
(cont.) 17 1645 2 6535 127.4718
18 1584 1.4305 78.7138
19 1508 5.0600 151.0477
20 1490 2.6756 56.6224
21 1413 4’5746 202 2534
22 1403 1 3699 77.7505
23 1228 1.0470 62.2514
24 1033 0.2646 131 4039
25 992 2.172 65.220
26 862 5.055 351.817
27 744 3 076 35.164
28 687 2.499 77.96%
29 647 4.473 70 328
30 624 0.863 9.561
31 604 0.907 984.600
32 575 3.231 447796
33 562 2.718 462.023
34 530 5.917 213.299
35 528 5.151 2.969
URANUS R2 1 22440 0.69953 74.781 60
2 4727 1.6990 63.7359
3 1682 4.6483 70.849 4
4 1650 3096 11.0457
5 1434 3.5212 149 5632
6 770 0 0
7 500 6.172 76.266
8 461 0.767 3.932
9 390 4 496 56.622
10 390 5.527 85.827
11 292 0.204 52690
12 287 3.534 73.297
13 273 3.847 138,517
14 220 1.964 131 404
15 216 0 848 77.96%
16 205 3,248 78 714
17 149 4.898 127.472
18 129 2.081 3.181
URANUS R3 1 1164 4.7345 74,7816
2 212 3.343 63.736
3 196 2.980 70 849
4 105 0.958 11.046
5 73 1.00 149.56
6 72 0.03 56.62
7 55 2.59 3.93
8 36 5.65 77.96
9 34 3.82 76.27
10 32 3.60 131.40
URANUS R4 1 53 3.01 74.78
2 10 1.91 56.62
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NEPTUNE LO 1 531188633 0 0
2 1798476 2.9010127 38.1330356
3 1019728 0.4858092 1.4844727
4 124532 4.830081 36.648 563
5 42064 5.41055 2.968 95
6 37715 6.09222 35.16409
7 33785 1,.24489 76.266 07
8 16 483 0.00008 491.55793
9 9199 4,9375 39,6175
10 8994 0.2746 175.166 1
11 4216 1.9871 73.2971
12 3365 1.0359 33,6796
13 2285 4.2061 4.4534
14 1434 2.7834 74,7816
15 900 2.076 109.946
16 745 3.190 71.813
17 506 5.748 114.399
18 400 0.350 1021.249
19 345 3 462 41,102
20 340 3.304 77.751
21 323 2,248 32.195
22 306 0 497 0.521
23 287 4,505 0.048
24 282 2 246 146.594
25 267 4.889 0.963
26 252 5.782 388.465
27 245 1.247 9.561
28 233 2.505 137.033
29 227 1.797 453.425
30 170 3.324 108.461
31 151 2192 33.940
32 150 2.997 5.938
33 148 0,859 111.430
34 119 3.677 2.448
35 109 2 416 183.243
36 103 0,041 0.261
37 i 103 4,404 70 328
38 102 5.705 0.112
NEPTUNE L1 1 3837687717 0 0
2 16 604 4 86319 1.48447
3 15807 2.27923 38.13304
4 3335 3 6820 76.2661
5 1306 3.6732 2.9689
6 605 1 505 35.164
7 179 3.453 39.618
8 107 2.451 4.453
9 106 2 755 33.680
10 73 549 36.65
11 57 186 114.40
12 57 522 0.52
13 35 4.52 74.78
14 32 5.90 77.75
15 30 3.67 388.47
16 29 5.17 9.56
17 29 5.17 2.45

18 26 5.25 168.05



Planets : Periodic Terms 421

NEPTUNE L2 1 53893 0 0

2 296 1.855 1.484

3 281 1.191 38.133

4 270 5 721 76.266

5 23 1.21 2.97

6 9 4.43 35,16

7 7 0.54 2.45
NEPTUNE L3 1 21 (¢} 0

2 15 1 35 76.27

3 12 6.04 1.48

4 12 6.11 38,13
NEPTUNE L4 1 114 3.142 0
NEPTUNE BO 1 3088623 1 4410437 38.1330356

2 27780 591272 76.266 Q07

3 27624 0 0

4 15448 2.50877 39.61751

5 15355 2.52124 36.648 56

6 2000 1,5100 74,7816

7 1968 4.3778 1,4845

8 1015 32,2156 35,1641

9 606 2.802 73.297

10 595 2129 41.102

11 589 3.187 2.969

12 402 4.169 114.399

13 280 1.682 77.751

14 262 3.767 213.299

15 254 3.271 453,425

16 206 4.257 529,691

17 140 3.530 137.033
NEPTUNE Bl 1 227279 3.807931 38.133036

2 1803 1.9758 76.266 1

3 1433 3.1416 0

4 1386 4.8256 36.6486

5 1073 6.0805 29.6175

6 148 3.858 74.782

7 136 0.478 1.484

8 70 6.19 35.16

9 52 5.05 73.30

10 43 0.31 114.40

11 37 4.89 41 .10

12 37 5.76 2,97

13 26 5.22 213.30
NEPTUNE B2 1 9691 5.5712 38.1330

2 79 3.63 76.27

3 72 0.45 36.65

4 59 3.14 0

5 30 1.61 39.62

6 6 5.61 74.78
NEPTUNE B3 1 273 1,017 38.133

2 2 0 0

3 2 2.37 36.65

4 2 5.33 76.27
NEPTUNE B4 1 6 2.67 38.13
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NEPTUNE RO 1 3007013 206 0 0
2 27062259 1.329994 59 38,13303564
3 1691 764 3,2518614 36.648 5629
4 807831 5.185928 1.484473
5 537761 4,521139 35.164090
6 495 726 1.571057 491.557929
7 274572 1.845523 175.166 060
8 135134 3.372206 39.617508
9 121 802 5.797544 76.266 071
10 100895 0.377 027 73.297 126
11 69 792 3.79617 2.968 95
12 46688 5.749 38 33.67962
13 24594 0.508 02 109.94569
14 16939 1.59422 71.81265
15 14230 1.07786 74.781 60
16 12012 1.92062 1021.24889
17 8395 0.6782 146,594 3
18 7572 1.0715 388.4652
19 5721 2.5906 4.4534
20 4840 1.9069 41,1020
21 4483 2.9057 529.6910
22 4421 1.7499 108 4612
23 4354 0.6799 32,1951
24 4270 3.4134 453.4249
25 3381 0.8481 183 2428
26 2881 1.9860 137.0330
27 2879 3.6742 350.3321
28 2636 30976 213.2991
29 2530 5.7984 490.0735
30 2523 0.4863 493.0424
31 2306 2.8096 70.3282
32 2087 0.6186 33.9402
NEPTUNE R1 1 236 339 0.704 980 38.133036
2 13220 3.32015 1.48447
3 8622 6.2163 35,1641
4 2702 1.8814 39.6175
5 2155 2.0943 2.9689
6 2153 5.1687 76.2661
7 1603 0 0
8 1464 1.1842 33.6796
9 1136 3.9189 36.6486
10 898 5.241 388.465
11 790 0.533 168.053
12 760 0.021 182.280
13 607 1.077 1021.249
14 572 3 401 484.444
15 561 2.887 498.671
NEPTUNE R2 1 4247 5.8991 38.1330
2 218 0.346 1,484
3 163 2,239 168.053
4 156 4.594 182.280
5 127 2,848 35.164

NEPTUNE R3 1 166 4,552 38,133



Appendix III

Companion diskette

Separately available is a companion diskette for IBM PC's and compa-
tibles (360K 53" or 720K 3%"). Instructions on how to use the
disk are given on the disk.

The disk contains source codes for all the necessary routines for
developers of astronomical software, in one of three languages:
Turbo Pascal 4.0 (or higher), QuickBasic 4.5, and C. It saves the
programmer the time of writing the basic routines and entering thou-
sands of numerical constants (including the 2430 periodic terms from
Appendix II), allowing him to concentrate on the application and the
presentation of the results. The disk is therefore useful for begin-
ners as well as experienced programmers.

To illustrate how the various routines work together, the follo-
wing sample programs are provided. They all use the routines in the
library and cover all the important topics in the book.

1. ALMANAC

This program is an 'automatic almanac generator'. It calculates a.o.
equinoxes and solstices, conjunctions and oppositions, and greatest
elongations for a given year.

2. CALENDAR

This is a comprehensive general-purpose calendar program which also
provides the rise and setting times of the Sun and the Moon.

3. EPHEM

Calculates an ephemeris for a comet, an asteroid, or any other solar
system object from its orbital elements.

4. JSATS

Shows the positions of the four Galilean satellites of Jupiter gra-
phically. Uses the low-precision formulae.

423



424 ASTRONOMICAL ALGORITHMS

5. MOON

Gives a complete positional and physical ephemeris of the Moon:
ecliptic and equatorial coordinates, phase, rise and setting times,
and both physical and optical libration. Calculating a lunar ephe-
meris is one of the more difficult subjects covered in this book.

6. PLANETS

Calculates a complete ephemeris of the Sun or any of the planets:
heliocentric, geocentric and topocentric coordinates, rise and set-
ting times, phase and magnitude, and a physical ephemeris where
available. This program includes all the planetary terms from
Appendix II!

7. STAR

Gives the apparent place of a star at any instant.

A math coprocessor can be useful for speeding up some of the cal-
culations, but it is not needed.

The programs were written by Jeffrey Sax. The author would like
to thank Christian Steyaert and other members of the Working Group
Information Technology of the VVS (the Belgian astronomical asso-
ciation) for the testing and the many useful tips and suggestions.

See last of page this book for software order form
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The numbers refer to the pages

Abbreviations, 5

Aberration, 378; constant of,
139; of planets, 210; Ron-
Vondrdk expression, 141; of
stars, 139

Absolute magnitude, of minor
planets, 217; of stars, 366

Accuracy, needed for a problem,
15; of a computer, 16

Altitude, 89

Angles, large, 7; modes, 7;
negative, 9

Angular separation, 105

Anomalistic period of Moon, 331

Anomaly, mean, true and eccen-
tric, 182, 380; mean, 198;
true in parabolic motion, 225;
true in near-parabolic mo-
tion, 230

Aphelion of planets, 253

Apheloid, 255

Apogee of Moon, 325; extreme,
332

Apparent place, of a planet,
211; of a star, 137

Areographic, 379

Ascending node, 378

Ascension, right, 87, 89, 378

ASCIl characters, 58

Astrometric position, 216

Astronomical Unit, 379

ATN2, 9

Autumnal equinox, 377

Azimuth, 87, 88, 89, 378

Barker's equation, 226
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BCD, 19

Besselian year, 125

Binary arithmetics, 19

Binary search, 53, 195

Binary stars, 367; eccentricity
of apparent orbit, 370

Bodies in smallest circle, 119;
in straight line, 117

Brightness ratio of stars, 365

Calendar date from JD, 63

Carrington, synodic rotation of
the Sun, 179

Center, equation cf, 220, 380

Central Meridian of Jupiter,
277; of Mars, 271; of Sun,
177

Century, Julian, 379

Circle, smallest of three bo-
dies, 119

Colongitude, selenographic of
Sun, 346

Comets, magnitude, 216

Conjunctions, 378; planetary,
113; planets with Sun, 233

Coordinates, 378; galactic, 87,
89; geocentric ecliptic, 209;
geocentric equatorial, 215;
geocentric rectangular of an
observer, 77; heliocentric
ecliptic, 205; transformation
of, 87

Correlation, coefficient of 1li-
near regression, 38

Curve fitting, 35; general, 44;
linear, 36; quadratic, 43



426 ASTRONOMICAL ALGORITHMS

Date, of Easter, 67; from JD,
63; scientific form, 6

Day, Julian, 39; of the week,
65; of the year, 65

Declination, 87, 89, 378; maxi-
mum of Moon, 337

Defect of illumination, 271, 274

Delta T (AT), 71

Distance, angular, 105; between
points on Earth's surface, 80;
of stars and absolute magni-
tude, 366

Double stars, see Binary stars

Dynamical Time, 71

Earth, eccentricity of orbit,
151; globe, 77, 79; distance
between points, 80; orbital
elements for mean equinox of
date, 200; for equin. 2000.0,
203; perihelion and aphelion,
253, 257, 258

Easter, date of, Gregorian, 67;
Julian, 69

Eccentricity, 182

Eclipses, 349; accuracy, 357;
lunar, 352; solar, 351

Ecliptic, 377; dynamical, 154;
and horizon, 92; obliquity
of, 88, 135, 214

Ecliptical coordinates, 88

Elements, osculating, 214, 219;
of planetary orbits, mean
equinox of date, 200; equinox
2000.0, 203; reduction to
another equinox, 147

Ellipse, length of, 223

Elliptic motion, first method,
209; second method, 213

Elongation, definitions, 238;
greatest of Mercury and Ve-
nus, 237; of planet, 211, 216;
of Venus (approximate), 268

Ephemeris, 380

Ephemeris day, 379

Epoch, 214, 379

Equation, of Barker, 226; of
the center, 222, 380; of the
equinoxes, 84; of Kepler, 181;
of time, 171

Equator, celestial, 377; mean,
378

Equinox, 377; correction, 129;
mean, 137, 378; true, 137

Equinoxes, 165

E-terms, 129

Extremum from three values,
25; from five values, 29

FK4, 129, 130

FKS5, 129, 130

Fraction illuminated, of Moon,
315; of planet, 267; of Venus
(approximate), 268

Galactic coordinates, 89, 90

Gaussian gravitational constant,
214, 225, 379

Geocentric, 378; latitude, 77;
rectangular coordinates of an
observer, 77

Geographical latitude, 77

Geoid, 77

Geometric position, 210, 379

Greenwich, civil time, 379;
mean time, 379

Haversine, 111

Heliocentric, 378

Heliographic coordinates, 177,
379

Hour angle, 88, 89; at rise
and set, 9%, 98

Ifuminated Fraction, of Moon,
315; of planet, 267; of Venus
(approximate), 268

INT, 60

interpolation, from three values,
23; from five values, 28; re-
marks, 30, 31; to halves, 32;
with Lagrange's formula, 32;
extremum, 25, 29; zero value,
26, 27, 29

lteration, 47

Julian century, 379

Julian Day, 59; modified, 63

Jupiter, magnitude, 269, 270;
orbital elements for mean
equinox of date, 201; for
equinox 2000.0, 204; perihe-
lion and aphelion, 253; phe-
nomena, 233; phys. ephemeris,
277, 281; positions of satel-
lites, 285, 286, 288; semi-
diameter, 359, 360
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Kepler, equation of, 181; first
method, 184; second method,
187; third method, 195;
fourth method, 195

Lagrange interpolation formu-
la, 32

Latitude, celestial, 377; geo-
centric, 77

Least squares, 36

Librations of Moon, optical,
341; physical, 342; topocen-
tric, 345

Light-time, 210

Light-year, 366

Linear regression, 36

Longitude, celestial, 377; geo-
graphical, 89; orbital and
ecliptical, 206

Lunation, 324

Magnitude, of a lunar eclipse,
352; of a solar eclipse, 352

Magnitude, absolute of stars,
366; adding, 363; of comets,
216; of minor planets, 217

Major axis, 182

Mars, magnitude, 269, 270; or-
bital elements for mean equi-
nox of date, 201; for equinox
2000.0, 203; perihelion and
aphelion, 253; phenomena, 233;
physical ephemeris, 271;
semidiameter, 359, 360

Mercury, magnitude, 269, 270;
orbital elements for mean
equinox of date, 200; for
equinox 2000.0, 203; perihe-
lion and aphelion, 253; phe-
nomena, 233, 237; semidia-
meter, 359, 360

Minor planets, magnitudes, 217

Moon, mean anomaly, 308; ano-
malistic period, 331; maximum
declinations, 337; eclipses,
352; mean elongation, 308;
illuminated fraction of disk,
315; optical librations, 341;
physical librations, 342; to-
pocentric librations, 345;
mean longitude, 307; longitu-
des of node and perigee, 313;
extreme lunations, 324; pas-
sages through nodes, 333;

427

correction for parallax, 263,
264; perigee and apogee, 325;
extreme perigees and apogees,
332; phases, 319; physical
ephemeris, 341; position, 307;
position angle of axis, 343;
position angle of bright limb,
316; selenographic position
of Sun, 346; semidiameter,
360, 361; synodic period, 324

Motion, elliptic, 209, 213;
near-parabolic, 229; parabo-
lic, 225

Neptune, magnitude, 269, 270;
nodes, 262; orbital elements
for mean equinox of date, 202;
for equinox 2000.0, 204; va-
riation of osculating ele-
ments, 219; perihelion and
aphelion, 253, 255; phenomena,
233; semidiameter, 359, 360

New Moon, see Phases of Moon

Newton's method for solving an
equation, 50

Nodes, passages through, 259,
260; of Moon, 333

Nutation, 131; effect of, 138;
in right ascension, 84

Obliquity of ecliptic, 88, 135

Opposition, 233, 378

Orbital elements, see Elements

Osculating elements, 214, 219

Parabolic motion, 225

Parallactic angle, 93

Parallax, correction for, 263;
in ecliptical coordinates,
266; in horizontal coordina-
tes, 265; of stars, 138, 366

Parsec, 366

Periastron, 379

Perigee of Moon, 325, 379; ex-
treme, 332

Perihelion, 379; argument of,
197; of planets, 253

Periheloid, 255

Perijove, 379

Phase angle, 216, 267

Phases of Moon, 319

Phenomena, planetary, 233

Place, apparent of a star, 137

Planetographic, 379
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Planets, elements of orbits,
200, 203; elongation, 211,
216; geocentric positions,
209, 213; heliocentric posi-
tions, 205; illuminated frac-
tion of disk, 267; magnitude,
269, 270; passages through
nodes, 259; perihelion and
aphelion, 253; phase angle,
267; phenomena, 233; semi-
diameters, 359, 360; princi-
pal periodic terms, 382

Pluto, magnitude, 270; position,
247; semidiameter, 360

Poles, celestial, 377; galac-
tic, 89

Powers, avoiding, 10; of time,
10

Precession, 123, 378; low accu-
racy, 124; rigorous method,
126; in ecliptical coordina-
tes, 128; old elements, 129

Program, debugging, 12; shor-
tening, 11

Proper motion, 138

Quadrant, correct, 8

Quicksort, 56

Radius vector, 182, 379; in el-
liptical motion, 183, 205,
209, 215; in near-parabolic
motion, 230; in parabolic mo-
tion, 225; series expansion,
222

Rectangular coordinates, geo-
centric of observer, 77; of a
planet or comet, 209, 215; of
the Sun, 159, 160, 162

Refraction, atmospheric, 101

Regression, linear, 36

Right ascension, 87, 89, 378

Ring of Saturn, 301

Rising, 97

Rounding, errors, 18; the final
results, 21; right ascension
and declination, 22

Satellites of Jupiter, conjunc-
tions, 298; phenomena, 299;
positions, 285, 286, 288

Saturn, magnitude, 269, 270;
nodes, 262; orbital elements
for mean equinox of date,
201; for equinox 2000.0, 204;

perihelion and aphelion, 253,
255; phenomena, 233; ring,
301; semidiameter, 359, 360

Seasons, 165; durations, 169

Selenographic, coordinates, 341,
379; position of Sun, 346

Semidiameters of Sun, Moon, and
planets, 359

Separation, angular, 105

Series, accuracy of truncated,
208

Setting, 97

Sidereal time, 379; apparent,
84; at Greenwich, 83

Solar coordinates, see Sun

Solstices, 165, 377

Sorting, 55

Star, apparent place, 137; bi-
nary, see Binary stars; dis-
tance and absolute magnitude,
366; magnitudes, 363, 365;
parallax, 138; proper motion,
138

Stellar magnitudes, adding, 363;
brightness ratio, 365

Straight line, bodies in, 117

Sun, mean anomaly, 151; coor-
dinates, low accuracy, 151;
higher accuracy, 154; daily
variation of longitude, 156;
eclipses, 351; mean longitude,
151; physical ephemeris, 177;
rectangular coordinates, 159,
160, 162; semidiameter, 359;
synodic rotations, 179

Sundial, planar, 371

Symbols, 5, 6

Synodic month, 324

Tests, safety, 12; on 'smaller
than', 52

Time, Dynamical and Universal,
71; equation of, 171; Green-
wich, 379; sidereal, 83, 379;
solar, 379

Topocentric, 378; positions, 263

Transformation of coordinates,
87

Transit, time of a body, 97

Universal Time, 71, 379

Uranus, magnitude, 269, 270;
nodes, 262; orbital elements
for mean equinox of date, 202;
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for equinox 2000.0, 204; pe-
rihelion and aphelion, 253,
255; phenomena, 233; semidia-
meter, 359, 360

Velocity on an elliptic orbit,
223

Venus, elongation, 268; illu-
minated fraction of disk,
268; magnitude, 269, 270;
orbital elements for mean
equinox of date, 200; for
equinox 2000.0, 203; peri-
helion and aphelion, 253;

O
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phenomena, 233, 237;
meter, 359, 360

Vernal equinox, 377

VSOP, 154, 205; principal
terms, 382

Week, day of, 65

X, Y., Z, coordinates of Sun,
159, 160, 162

Year, Besselian and Julian,
125; day of, 65; leap, 62

Zero of a function, from three
values, 26, 27; from five va-
lues, 29

semidia-
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About This Book From Roger Sinnott’s Introduction

In the field of celestial calculations, Jean Meeus has enjoyed wide acclaim and respect since long
before microcomputers and pocket calculators appeared on the market. When he brought out his
Astronomical Formulae for Calculators in 1979, it was practically the only book of its genre. It quickly
became the “source among sources,” even for other writers in the field. Many of them have warmly
acknowledged their debt (or should have), citing the unparalleled clarity of his instructions and the
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Andnow this Belgian astronomer has outdone himself yet again! Virtually every previous handbook
on celestial calculations (including his own earlier work) was forced to refy on formulae for the Sun,
Moon, and planets that were developed in the last century—orat least before 1920. The past 10 years,
however, have seen a stunning revolution in how the world’s major observatories produce their
almanacs. The Jet Propulsion Laboratory in California and the U.S. Naval Observatory in
Woashington, D.C., have perfected powerful new machine methods for modeling the motions and
interactions of bodies witﬁin the solar system. At the same time in Paris, the Bureau des Longitudes
hasbeen a beehive of activity aimed at describing these motions analytically, in the form of explicit
equations.
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brains, human or electronic. But Astronomical Algorithms changes all that. With hisspecial knack for
compultlations of all sorts, the author has made the essentials of these modern techniques available
to us all.
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There are times when an amateur astronomer wants to perform the computations that support his
or her observations. Astronomical Algorithms is the reference to have for this. Jean Meeus’ concise
volume collects most of the algorithms and computational techniques an observer might want—
covering coordinate transformations, the apparent place of astar, the positions of solar system bodies,
eclipse predictions, and much more. Discussions are complete enough to make the equations fully
understandable to the novice, and virtually every algorithm includes a fully worked numerical
example. ... This is a very handy reference, well worth owning, even if you never have to perform a
specific calculation. The text along is helpful for understanding how the theories of celestial
mechanics are applied in practice. Sky & Telescope Magazine

... There is no doubt that the book is very good value for money,
and, together with the companion disc, computer-minded
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